BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 25360629)

  • 41. Repeatability of peripapillary retinal nerve fiber layer and inner retinal thickness among two spectral domain optical coherence tomography devices.
    Matlach J; Wagner M; Malzahn U; Göbel W
    Invest Ophthalmol Vis Sci; 2014 Sep; 55(10):6536-46. PubMed ID: 25228545
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Measurement of retinal thickness from three-dimensional images obtained from C scan images from the optical coherence tomography ophthalmoscope.
    Mizota A; Sakuma T; Miyauchi O; Honda M; Tanaka M
    Clin Exp Ophthalmol; 2007 Apr; 35(3):220-4. PubMed ID: 17430507
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reproducibility of retinal nerve fiber layer measurements across the glaucoma spectrum using optical coherence tomography.
    Vazirani J; Kaushik S; Pandav SS; Gupta P
    Indian J Ophthalmol; 2015 Apr; 63(4):300-5. PubMed ID: 26044467
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prospective comparison of cirrus and stratus optical coherence tomography for quantifying retinal thickness.
    Kiernan DF; Hariprasad SM; Chin EK; Kiernan CL; Rago J; Mieler WF
    Am J Ophthalmol; 2009 Feb; 147(2):267-275.e2. PubMed ID: 18929353
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of retinal nerve fibre layer measurements using optical coherence tomography versions 1 and 3 in eyes with band atrophy of the optic nerve and normal controls.
    Monteiro ML; Leal BC; Moura FC; Vessani RM; Medeiros FA
    Eye (Lond); 2007 Jan; 21(1):16-22. PubMed ID: 16311523
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Retinal thickness analysis with time and spectral-domain optical coherence tomography. Cross-platform interchangeability of manual measurements.
    Neri A; Delfini E; Casubolo C; Macaluso C
    Acta Biomed; 2011 Dec; 82(3):244-50. PubMed ID: 22783721
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Three-dimensional high-speed optical coherence tomography imaging of lamina cribrosa in glaucoma.
    Inoue R; Hangai M; Kotera Y; Nakanishi H; Mori S; Morishita S; Yoshimura N
    Ophthalmology; 2009 Feb; 116(2):214-22. PubMed ID: 19091413
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Conversion of Stratus optical coherence tomography (OCT) retinal thickness to Cirrus OCT values in age-related macular degeneration.
    Krebs I; Hagen S; Smretschnig E; Womastek I; Brannath W; Binder S
    Br J Ophthalmol; 2011 Nov; 95(11):1552-4. PubMed ID: 21349936
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparison of retinal thickness measurements and segmentation performance of four different spectral and time domain OCT devices in neovascular age-related macular degeneration.
    Mylonas G; Ahlers C; Malamos P; Golbaz I; Deak G; Schuetze C; Sacu S; Schmidt-Erfurth U
    Br J Ophthalmol; 2009 Nov; 93(11):1453-60. PubMed ID: 19520692
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Retinal nerve fiber layer thickness using spectral-domain optical coherence tomography in patients with no light perception secondary to optic atrophy.
    Groth SL; Harrison A; Grajewski AL; Lee MS
    J Neuroophthalmol; 2013 Mar; 33(1):37-9. PubMed ID: 23075807
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Retinal nerve fiber layer thickness in a population of 12-year-old children in central China measured by iVue-100 spectral-domain optical coherence tomography: the Anyang Childhood Eye Study.
    Zhu BD; Li SM; Li H; Liu LR; Wang Y; Yang Z; Li SY; Kang MT; Fu J; Qi YH; Zhan SY; Wang N;
    Invest Ophthalmol Vis Sci; 2013 Dec; 54(13):8104-11. PubMed ID: 24150754
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparison of choroidal thicknesses using swept source and spectral domain optical coherence tomography in diseased and normal eyes.
    Tan CS; Ngo WK; Cheong KX
    Br J Ophthalmol; 2015 Mar; 99(3):354-8. PubMed ID: 25273828
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Alignment artifacts in optical coherence tomography analyzed images.
    Leung CK; Chan WM; Chong KK; Chan KC; Yung WH; Tsang MK; Tse RK; Lam DS
    Ophthalmology; 2007 Feb; 114(2):263-70. PubMed ID: 17123619
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In vivo evaluation of laser-induced choroidal neovascularization using spectral-domain optical coherence tomography.
    Giani A; Thanos A; Roh MI; Connolly E; Trichonas G; Kim I; Gragoudas E; Vavvas D; Miller JW
    Invest Ophthalmol Vis Sci; 2011 Jun; 52(6):3880-7. PubMed ID: 21296820
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of optic area measurement using fundus photography and optical coherence tomography between optic nerve head drusen and control subjects.
    Flores-Rodríguez P; Gili P; Martín-Ríos MD; Grifol-Clar E
    Ophthalmic Physiol Opt; 2013 Mar; 33(2):164-71. PubMed ID: 23311663
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vivo analysis of the iris thickness by spectral domain optical coherence tomography.
    Invernizzi A; Cigada M; Savoldi L; Cavuto S; Fontana L; Cimino L
    Br J Ophthalmol; 2014 Sep; 98(9):1245-9. PubMed ID: 24735773
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In vivo Structural Assessments of Ocular Disease in Rodent Models using Optical Coherence Tomography.
    Allen RS; Bales K; Feola A; Pardue MT
    J Vis Exp; 2020 Jul; (161):. PubMed ID: 32773758
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Normative Retinal Thicknesses in Common Animal Models of Eye Disease Using Spectral Domain Optical Coherence Tomography.
    Carpenter CL; Kim AY; Kashani AH
    Adv Exp Med Biol; 2018; 1074():157-166. PubMed ID: 29721940
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spatial correlation of mouse photoreceptor-RPE thickness between SD-OCT and histology.
    Knott EJ; Sheets KG; Zhou Y; Gordon WC; Bazan NG
    Exp Eye Res; 2011 Feb; 92(2):155-60. PubMed ID: 21035444
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparison of line-field confocal optical coherence tomography images with histological sections: Validation of a new method for in vivo and non-invasive quantification of superficial dermis thickness.
    Pedrazzani M; Breugnot J; Rouaud-Tinguely P; Cazalas M; Davis A; Bordes S; Dubois A; Closs B
    Skin Res Technol; 2020 May; 26(3):398-404. PubMed ID: 31799766
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.