BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 25360827)

  • 1. Cholesterol drives aβ(1-42) interaction with lipid rafts in model membranes.
    Seghezza S; Diaspro A; Canale C; Dante S
    Langmuir; 2014 Nov; 30(46):13934-41. PubMed ID: 25360827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane domain modulation of Aβ
    Azouz M; Cullin C; Lecomte S; Lafleur M
    Nanoscale; 2019 Nov; 11(43):20857-20867. PubMed ID: 31657431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of membrane interaction and aggregation of amyloid β-peptide on lipid mobility and membrane domain structure.
    Sasahara K; Morigaki K; Shinya K
    Phys Chem Chem Phys; 2013 Jun; 15(23):8929-39. PubMed ID: 23515399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers.
    Garner AE; Smith DA; Hooper NM
    Mol Membr Biol; 2007; 24(3):233-42. PubMed ID: 17520480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between Alzheimer's Abeta(25-35) peptide and phospholipid bilayers: the role of cholesterol.
    D'Errico G; Vitiello G; Ortona O; Tedeschi A; Ramunno A; D'Ursi AM
    Biochim Biophys Acta; 2008 Dec; 1778(12):2710-6. PubMed ID: 18706389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of antimicrobial peptide action: studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy.
    Shaw JE; Alattia JR; Verity JE; Privé GG; Yip CM
    J Struct Biol; 2006 Apr; 154(1):42-58. PubMed ID: 16459101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The iAβ5p β-breaker peptide regulates the Aβ(25-35) interaction with lipid bilayers through a cholesterol-mediated mechanism.
    Vitiello G; Grimaldi M; D'Ursi AM; D'Errico G
    Biochem Biophys Res Commun; 2012 Jan; 417(1):88-92. PubMed ID: 22138241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preferential accumulation of Abeta(1-42) on gel phase domains of lipid bilayers: an AFM and fluorescence study.
    Choucair A; Chakrapani M; Chakravarthy B; Katsaras J; Johnston LJ
    Biochim Biophys Acta; 2007 Jan; 1768(1):146-54. PubMed ID: 17052685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time analysis of the effects of cholesterol on lipid raft behavior using atomic force microscopy.
    Lawrence JC; Saslowsky DE; Edwardson JM; Henderson RM
    Biophys J; 2003 Mar; 84(3):1827-32. PubMed ID: 12609884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase separation is induced by phenothiazine derivatives in phospholipid/sphingomyelin/cholesterol mixtures containing low levels of cholesterol and sphingomyelin.
    Hendrich AB; Michalak K; Wesołowska O
    Biophys Chem; 2007 Oct; 130(1-2):32-40. PubMed ID: 17662517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman spectroscopy for detecting supported planar lipid bilayers composed of ganglioside-GM1/sphingomyelin/cholesterol in the presence of amyloid-β.
    Hu Z; Wang X; Wang W; Zhang Z; Gao H; Mao Y
    Phys Chem Chem Phys; 2015 Sep; 17(35):22711-20. PubMed ID: 26256454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of sequence and lipid type on membrane perturbation by human and rat amyloid β-peptide (1-42).
    Brown AM; Bevan DR
    Arch Biochem Biophys; 2017 Jan; 614():1-13. PubMed ID: 27884599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of sphingomyelin, cholesterol and zinc ions on the binding, insertion and aggregation of the amyloid Abeta(1-40) peptide in solid-supported lipid bilayers.
    Devanathan S; Salamon Z; Lindblom G; Gröbner G; Tollin G
    FEBS J; 2006 Apr; 273(7):1389-402. PubMed ID: 16689927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes.
    Yuan C; Furlong J; Burgos P; Johnston LJ
    Biophys J; 2002 May; 82(5):2526-35. PubMed ID: 11964241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different effects of Alzheimer's peptide Aβ(1-40) oligomers and fibrils on supported lipid membranes.
    Canale C; Seghezza S; Vilasi S; Carrotta R; Bulone D; Diaspro A; San Biagio PL; Dante S
    Biophys Chem; 2013 Dec; 182():23-9. PubMed ID: 23998637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholesterol Decreases the Size and the Mechanical Resistance to Rupture of Sphingomyelin Rich Domains, in Lipid Bilayers Studied as a Model of the Milk Fat Globule Membrane.
    Murthy AV; Guyomarc'h F; Lopez C
    Langmuir; 2016 Jul; 32(26):6757-65. PubMed ID: 27300157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differing modes of interaction between monomeric Aβ(1-40) peptides and model lipid membranes: an AFM study.
    Sheikh K; Giordani C; McManus JJ; Hovgaard MB; Jarvis SP
    Chem Phys Lipids; 2012 Feb; 165(2):142-50. PubMed ID: 22182491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sphingomyelin and cholesterol: from membrane biophysics and rafts to potential medical applications.
    Barenholz Y
    Subcell Biochem; 2004; 37():167-215. PubMed ID: 15376621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale structural and mechanical effects of beta-amyloid (1-42) on polymer cushioned membranes: a combined study by neutron reflectometry and AFM Force Spectroscopy.
    Dante S; Hauss T; Steitz R; Canale C; Dencher NA
    Biochim Biophys Acta; 2011 Nov; 1808(11):2646-55. PubMed ID: 21810407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting of Helicobacter pylori vacuolating toxin to lipid raft membrane domains analysed by atomic force microscopy.
    Geisse NA; Cover TL; Henderson RM; Edwardson JM
    Biochem J; 2004 Aug; 381(Pt 3):911-7. PubMed ID: 15128269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.