These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 25361042)

  • 1. A microfluidic pipette array for mechanophenotyping of cancer cells and mechanical gating of mechanosensitive channels.
    Lee LM; Liu AP
    Lab Chip; 2015 Jan; 15(1):264-73. PubMed ID: 25361042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an advanced microfluidic micropipette aspiration device for single cell mechanics studies.
    Lee LM; Lee JW; Chase D; Gebrezgiabhier D; Liu AP
    Biomicrofluidics; 2016 Sep; 10(5):054105. PubMed ID: 27703591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A combined experimental and theoretical approach towards mechanophenotyping of biological cells using a constricted microchannel.
    Raj A; Dixit M; Doble M; Sen AK
    Lab Chip; 2017 Oct; 17(21):3704-3716. PubMed ID: 28983550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micropipette aspiration of substrate-attached cells to estimate cell stiffness.
    Oh MJ; Kuhr F; Byfield F; Levitan I
    J Vis Exp; 2012 Sep; (67):. PubMed ID: 23051713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic micropipette aspiration for measuring the deformability of single cells.
    Guo Q; Park S; Ma H
    Lab Chip; 2012 Aug; 12(15):2687-95. PubMed ID: 22622288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Siphon-driven microfluidic passive pump with a yarn flow resistance controller.
    Jeong GS; Oh J; Kim SB; Dokmeci MR; Bae H; Lee SH; Khademhosseini A
    Lab Chip; 2014 Nov; 14(21):4213-9. PubMed ID: 25184743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Microfluidic Micropipette Aspiration Device to Study Single-Cell Mechanics Inspired by the Principle of Wheatstone Bridge.
    Li YJ; Yang YN; Zhang HJ; Xue CD; Zeng DP; Cao T; Qin KR
    Micromachines (Basel); 2019 Feb; 10(2):. PubMed ID: 30781497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfluidic platform for profiling biomechanical properties of bacteria.
    Sun X; Weinlandt WD; Patel H; Wu M; Hernandez CJ
    Lab Chip; 2014 Jul; 14(14):2491-8. PubMed ID: 24855656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of the mechanical properties of single Synechocystis sp. strain PCC6803 cells in different osmotic concentrations using a robot-integrated microfluidic chip.
    Chang D; Sakuma S; Kera K; Uozumi N; Arai F
    Lab Chip; 2018 Apr; 18(8):1241-1249. PubMed ID: 29568834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput microfluidic micropipette aspiration device to probe time-scale dependent nuclear mechanics in intact cells.
    Davidson PM; Fedorchak GR; Mondésert-Deveraux S; Bell ES; Isermann P; Aubry D; Allena R; Lammerding J
    Lab Chip; 2019 Nov; 19(21):3652-3663. PubMed ID: 31559980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible microfluidic device for mechanical property characterization of soft viscoelastic solids such as bacterial biofilms.
    Hohne DN; Younger JG; Solomon MJ
    Langmuir; 2009 Jul; 25(13):7743-51. PubMed ID: 19219968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic elasticity measurement of single cells using a microfluidic system with real-time image processing.
    Cai Y; Chen S; Xu D; Guo T; Jin J; Chen H
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation and capture of circulating tumor cells from whole blood using a bypass integrated microfluidic trap array.
    Yousang Yoon ; Sunki Cho ; Seonil Kim ; Eunsuk Choi ; Rae-Kwon Kim ; Su-Jae Lee ; Onejae Sul ; Seung-Beck Lee
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4431-4. PubMed ID: 25570975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic device for mechanical dissociation of cancer cell aggregates into single cells.
    Qiu X; De Jesus J; Pennell M; Troiani M; Haun JB
    Lab Chip; 2015 Jan; 15(1):339-350. PubMed ID: 25377468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high-throughput microfluidic device inspired by the Wheatstone bridge principle for characterizing the mechanical properties of single cells.
    Hu S; Liu T; Xue C; Li Y; Yang Y; Xu X; Liu B; Chen X; Zhao Y; Qin K
    Anal Methods; 2022 Dec; 14(46):4813-4821. PubMed ID: 36382629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array.
    Hung PJ; Lee PJ; Sabounchi P; Aghdam N; Lin R; Lee LP
    Lab Chip; 2005 Jan; 5(1):44-8. PubMed ID: 15616739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative Deformability Cytometry: Rapid, Calibrated Measurements of Cell Mechanical Properties.
    Nyberg KD; Hu KH; Kleinman SH; Khismatullin DB; Butte MJ; Rowat AC
    Biophys J; 2017 Oct; 113(7):1574-1584. PubMed ID: 28978449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Instrumentation of a Microfluidic Analyzer Enabling the Characterization of the Specific Membrane Capacitance, Cytoplasm Conductivity, and Instantaneous Young's Modulus of Single Cells.
    Wang K; Zhao Y; Chen D; Huang C; Fan B; Long R; Hsieh CH; Wang J; Wu MH; Chen J
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28629175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell proliferation and migration inside single cell arrays.
    Chanasakulniyom M; Glidle A; Cooper JM
    Lab Chip; 2015 Jan; 15(1):208-15. PubMed ID: 25340681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microconstriction arrays for high-throughput quantitative measurements of cell mechanical properties.
    Lange JR; Steinwachs J; Kolb T; Lautscham LA; Harder I; Whyte G; Fabry B
    Biophys J; 2015 Jul; 109(1):26-34. PubMed ID: 26153699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.