These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25361050)

  • 1. Quantum dot-based concentric FRET configuration for the parallel detection of protease activity and concentration.
    Wu M; Petryayeva E; Algar WR
    Anal Chem; 2014 Nov; 86(22):11181-8. PubMed ID: 25361050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum dot-based multidonor concentric FRET system and its application to biosensing using an excitation ratio.
    Kim H; Ng CY; Algar WR
    Langmuir; 2014 May; 30(19):5676-85. PubMed ID: 24810095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly of a concentric Förster resonance energy transfer relay on a quantum dot scaffold: characterization and application to multiplexed protease sensing.
    Algar WR; Ancona MG; Malanoski AP; Susumu K; Medintz IL
    ACS Nano; 2012 Dec; 6(12):11044-58. PubMed ID: 23215458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing.
    Algar WR; Wegner D; Huston AL; Blanco-Canosa JB; Stewart MH; Armstrong A; Dawson PE; Hildebrandt N; Medintz IL
    J Am Chem Soc; 2012 Jan; 134(3):1876-91. PubMed ID: 22220737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiplexed tracking of protease activity using a single color of quantum dot vector and a time-gated Förster resonance energy transfer relay.
    Algar WR; Malanoski AP; Susumu K; Stewart MH; Hildebrandt N; Medintz IL
    Anal Chem; 2012 Nov; 84(22):10136-46. PubMed ID: 23128345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifunctional Concentric FRET-Quantum Dot Probes for Tracking and Imaging of Proteolytic Activity.
    Massey M; Li JJ; Algar WR
    Methods Mol Biol; 2017; 1530():63-97. PubMed ID: 28150196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An enzymatically-sensitized sequential and concentric energy transfer relay self-assembled around semiconductor quantum dots.
    Samanta A; Walper SA; Susumu K; Dwyer CL; Medintz IL
    Nanoscale; 2015 May; 7(17):7603-14. PubMed ID: 25804284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative measurement of proteolytic rates with quantum dot-peptide substrate conjugates and Förster resonance energy transfer.
    Wu M; Petryayeva E; Medintz IL; Algar WR
    Methods Mol Biol; 2014; 1199():215-39. PubMed ID: 25103812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and application of quantum dots FRET-based protease sensors.
    Shi L; De Paoli V; Rosenzweig N; Rosenzweig Z
    J Am Chem Soc; 2006 Aug; 128(32):10378-9. PubMed ID: 16895398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-chip multiplexed solid-phase nucleic acid hybridization assay using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer.
    Noor MO; Tavares AJ; Krull UJ
    Anal Chim Acta; 2013 Jul; 788():148-57. PubMed ID: 23845494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting kallikrein proteolytic activity with peptide-quantum dot nanosensors.
    Breger JC; Sapsford KE; Ganek J; Susumu K; Stewart MH; Medintz IL
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11529-35. PubMed ID: 25003700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silver enhanced ratiometric nanosensor based on two adjustable Fluorescence Resonance Energy Transfer modes for quantitative protein sensing.
    Li H; Zhao Y; Chen Z; Xu D
    Biosens Bioelectron; 2017 Jan; 87():428-432. PubMed ID: 27589407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-step bioassays in serum and whole blood with a smartphone, quantum dots and paper-in-PDMS chips.
    Petryayeva E; Algar WR
    Analyst; 2015 Jun; 140(12):4037-45. PubMed ID: 25924885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum dot peptide biosensors for monitoring caspase 3 proteolysis and calcium ions.
    Prasuhn DE; Feltz A; Blanco-Canosa JB; Susumu K; Stewart MH; Mei BC; Yakovlev AV; Loukov C; Mallet JM; Oheim M; Dawson PE; Medintz IL
    ACS Nano; 2010 Sep; 4(9):5487-97. PubMed ID: 20822159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex logic functions implemented with quantum dot bionanophotonic circuits.
    Claussen JC; Hildebrandt N; Susumu K; Ancona MG; Medintz IL
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):3771-8. PubMed ID: 24354314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates.
    Medintz IL; Clapp AR; Brunel FM; Tiefenbrunn T; Uyeda HT; Chang EL; Deschamps JR; Dawson PE; Mattoussi H
    Nat Mater; 2006 Jul; 5(7):581-9. PubMed ID: 16799548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concentric Förster resonance energy transfer imaging.
    Wu M; Algar WR
    Anal Chem; 2015 Aug; 87(16):8078-83. PubMed ID: 26214686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantum dot-aptamer beacon using a DNA intercalating dye as the FRET reporter: application to label-free thrombin detection.
    Chi CW; Lao YH; Li YS; Chen LC
    Biosens Bioelectron; 2011 Mar; 26(7):3346-52. PubMed ID: 21306887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Luminescent quantum dots fluorescence resonance energy transfer-based probes for enzymatic activity and enzyme inhibitors.
    Shi L; Rosenzweig N; Rosenzweig Z
    Anal Chem; 2007 Jan; 79(1):208-14. PubMed ID: 17194141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signal-on Protein Detection via Dye Translocation between Aptamer and Quantum Dot.
    Lao YH; Chi CW; Friedrich SM; Peck K; Wang TH; Leong KW; Chen LC
    ACS Appl Mater Interfaces; 2016 May; 8(19):12048-55. PubMed ID: 27101438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.