These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 25361098)

  • 1. Far-field control of focusing plasmonic waves through disordered nanoholes.
    Seo E; Ahn J; Choi W; Lee H; Jhon YM; Lee S; Choi W
    Opt Lett; 2014 Oct; 39(20):5838-41. PubMed ID: 25361098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination.
    Zhao Z; Luo Y; Zhang W; Wang C; Gao P; Wang Y; Pu M; Yao N; Zhao C; Luo X
    Sci Rep; 2015 Oct; 5():15320. PubMed ID: 26477856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cascaded DBR plasmonic cavity lens for far-field subwavelength imaging at a visible wavelength.
    Li H; Fu L; Frenner K; Osten W
    Opt Express; 2018 Jul; 26(15):19574-19582. PubMed ID: 30114128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Focusing dual-wavelength surface plasmons to the same focal plane by a far-field plasmonic lens.
    Venugopalan P; Zhang Q; Li X; Kuipers L; Gu M
    Opt Lett; 2014 Oct; 39(19):5744-7. PubMed ID: 25360974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Focusing subwavelength light by using nanoholes in a transparent thin film.
    Wei PK; Chang WL; Lee KL; Lin EH
    Opt Lett; 2009 Jun; 34(12):1867-9. PubMed ID: 19529730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance.
    Song M; Wang C; Zhao Z; Pu M; Liu L; Zhang W; Yu H; Luo X
    Nanoscale; 2016 Jan; 8(3):1635-41. PubMed ID: 26691553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Focusing beyond the diffraction limit with far-field time reversal.
    Lerosey G; de Rosny J; Tourin A; Fink M
    Science; 2007 Feb; 315(5815):1120-2. PubMed ID: 17322059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shaping single emitter emission with metallic hole arrays: strong focusing of dipolar radiation.
    Moerland RJ; Eguiluz L; Kaivola M
    Opt Express; 2013 Feb; 21(4):4578-90. PubMed ID: 23481991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate.
    Harrison RK; Ben-Yakar A
    Opt Express; 2010 Oct; 18(21):22556-71. PubMed ID: 20941153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cascaded plasmonic superlens for far-field imaging with magnification at visible wavelength.
    Li H; Fu L; Frenner K; Osten W
    Opt Express; 2018 Apr; 26(8):10888-10897. PubMed ID: 29716019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manipulating propagating graphene plasmons at near field by shaped graphene nano-vacancies.
    Du L; Tang D
    J Opt Soc Am A Opt Image Sci Vis; 2014 Apr; 31(4):691-5. PubMed ID: 24695129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic nanoclusters with rotational symmetry: polarization-invariant far-field response vs changing near-field distribution.
    Rahmani M; Yoxall E; Hopkins B; Sonnefraud Y; Kivshar Y; Hong M; Phillips C; Maier SA; Miroshnichenko AE
    ACS Nano; 2013 Dec; 7(12):11138-46. PubMed ID: 24187975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing.
    Merlin R
    Science; 2007 Aug; 317(5840):927-9. PubMed ID: 17626847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Far-Field Wavefront Control of Nonlinear Luminescence in Disordered Gold Metasurfaces.
    Roubaud G; Bondareff P; Volpe G; Gigan S; Bidault S; Grésillon S
    Nano Lett; 2020 May; 20(5):3291-3298. PubMed ID: 32243180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sub-wavelength focusing meta-lens.
    Roy T; Rogers ET; Zheludev NI
    Opt Express; 2013 Mar; 21(6):7577-82. PubMed ID: 23546140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of randomly scattered surface plasmon polaritons for multiple-input and multiple-output plasmonic switching devices.
    Choi W; Jo Y; Ahn J; Seo E; Park QH; Jhon YM; Choi W
    Nat Commun; 2017 Mar; 8():14636. PubMed ID: 28262721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Far-field optical imaging of a linear array of coupled gold nanocubes: direct visualization of dark plasmon propagating modes.
    Chen HY; He CL; Wang CY; Lin MH; Mitsui D; Eguchi M; Teranishi T; Gwo S
    ACS Nano; 2011 Oct; 5(10):8223-9. PubMed ID: 21894949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic nanojet: an experimental demonstration.
    Minin IV; Minin OV; Glinskiy IA; Khabibullin RA; Malureanu R; Lavrinenko AV; Yakubovsky DI; Arsenin AV; Volkov VS; Ponomarev DS
    Opt Lett; 2020 Jun; 45(12):3244-3247. PubMed ID: 32538953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generating a plasmonic vortex field with arbitrary topological charges and positions by meta-nanoslits.
    Tang B; Zhang B; Ding J
    Appl Opt; 2019 Feb; 58(4):833-840. PubMed ID: 30874127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental solution for scattered imaging of the interference of plasmonic and photonic mode waves launched by metal nano-slits.
    Li X; Gao Y; Jiang S; Ma L; Liu C; Cheng C
    Opt Express; 2015 Feb; 23(3):3507-22. PubMed ID: 25836205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.