These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 25361143)

  • 1. Time-resolved multifocal multiphoton microscope for high speed FRET imaging in vivo.
    Poland SP; Krstajić N; Coelho S; Tyndall D; Walker RJ; Devauges V; Morton PE; Nicholas NS; Richardson J; Li DD; Suhling K; Wells CM; Parsons M; Henderson RK; Ameer-Beg SM
    Opt Lett; 2014 Oct; 39(20):6013-6. PubMed ID: 25361143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging.
    Poland SP; Krstajić N; Monypenny J; Coelho S; Tyndall D; Walker RJ; Devauges V; Richardson J; Dutton N; Barber P; Li DD; Suhling K; Ng T; Henderson RK; Ameer-Beg SM
    Biomed Opt Express; 2015 Feb; 6(2):277-96. PubMed ID: 25780724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging molecular interactions by multiphoton FLIM.
    Peter M; Ameer-Beg SM
    Biol Cell; 2004 Apr; 96(3):231-6. PubMed ID: 15182705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive optics for a time-resolved Förster resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM) in vivo.
    Coelho S; Poland SP; Devauges V; Ameer-Beg SM
    Opt Lett; 2020 May; 45(10):2732-2735. PubMed ID: 32412453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence resonance energy transfer determinations using multiphoton fluorescence lifetime imaging microscopy to characterize amyloid-beta plaques.
    Bacskai BJ; Skoch J; Hickey GA; Allen R; Hyman BT
    J Biomed Opt; 2003 Jul; 8(3):368-75. PubMed ID: 12880341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifocal multiphoton volumetric imaging approach for high-speed time-resolved Förster resonance energy transfer imaging in vivo.
    Poland SP; Chan GK; Levitt JA; Krstajić N; Erdogan AT; Henderson RK; Parsons M; Ameer-Beg SM
    Opt Lett; 2018 Dec; 43(24):6057-6060. PubMed ID: 30548010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging protein molecules using FRET and FLIM microscopy.
    Wallrabe H; Periasamy A
    Curr Opin Biotechnol; 2005 Feb; 16(1):19-27. PubMed ID: 15722011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting protein-protein interactions in vivo with FRET using multiphoton fluorescence lifetime imaging microscopy (FLIM).
    Llères D; Swift S; Lamond AI
    Curr Protoc Cytom; 2007 Oct; Chapter 12():Unit12.10. PubMed ID: 18770849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A feasible add-on upgrade on a commercial two-photon FLIM microscope for optimal FLIM-FRET imaging of CFP-YFP pairs.
    Xu L; Wang L; Zhang Z; Huang ZL
    J Fluoresc; 2013 May; 23(3):543-9. PubMed ID: 23456419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A practical method for monitoring FRET-based biosensors in living animals using two-photon microscopy.
    Tao W; Rubart M; Ryan J; Xiao X; Qiao C; Hato T; Davidson MW; Dunn KW; Day RN
    Am J Physiol Cell Physiol; 2015 Dec; 309(11):C724-35. PubMed ID: 26333599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions.
    Peter M; Ameer-Beg SM; Hughes MK; Keppler MD; Prag S; Marsh M; Vojnovic B; Ng T
    Biophys J; 2005 Feb; 88(2):1224-37. PubMed ID: 15531633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Setup and characterization of a multiphoton FLIM instrument for protein-protein interaction measurements in living cells.
    Waharte F; Spriet C; Héliot L
    Cytometry A; 2006 Apr; 69(4):299-306. PubMed ID: 16498675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo quantification of G protein coupled receptor interactions using spectrally resolved two-photon microscopy.
    Stoneman M; Singh D; Raicu V
    J Vis Exp; 2011 Jan; (47):. PubMed ID: 21304462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing the quantification of Forster resonance energy transfer measurement accuracies based on intensity, spectral, and lifetime imaging.
    Pelet S; Previte MJ; So PT
    J Biomed Opt; 2006; 11(3):34017. PubMed ID: 16822067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid Imaging of BCL-2 Family Interactions in Live Cells Using FLIM-FRET.
    Osterlund EJ; Hirmiz N; Tardif C; Andrews DW
    Methods Mol Biol; 2019; 1877():305-335. PubMed ID: 30536013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring protein interactions using Förster resonance energy transfer and fluorescence lifetime imaging microscopy.
    Day RN
    Methods; 2014 Mar; 66(2):200-7. PubMed ID: 23806643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fourier Multiplexed Fluorescence Lifetime Imaging.
    Peng L
    Methods Mol Biol; 2021; 2350():157-172. PubMed ID: 34331285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-fitting FLIM-FRET facilitates analysis of protein interactions in live zebrafish embryos.
    Auer JMT; Murphy LC; Xiao D; Li DU; Wheeler AP
    J Microsc; 2023 Jul; 291(1):43-56. PubMed ID: 36448983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative imaging of protein-protein interactions by multiphoton fluorescence lifetime imaging microscopy using a streak camera.
    Krishnan RV; Masuda A; Centonze VE; Herman B
    J Biomed Opt; 2003 Jul; 8(3):362-7. PubMed ID: 12880340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optogenetic Imaging of Protein Activity Using Two-Photon Fluorescence Lifetime Imaging Microscopy.
    Murakoshi H
    Adv Exp Med Biol; 2021; 1293():295-308. PubMed ID: 33398821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.