These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 25361213)

  • 1. In-situ TEM imaging of the anisotropic etching of graphene by metal nanoparticles.
    Wei J; Xu Z; Wang H; Tian X; Yang S; Wang L; Wang W; Bai X
    Nanotechnology; 2014 Nov; 25(46):465709. PubMed ID: 25361213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective etching of graphene edges by hydrogen plasma.
    Xie L; Jiao L; Dai H
    J Am Chem Soc; 2010 Oct; 132(42):14751-3. PubMed ID: 20923144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic resolution imaging of the edges of catalytically etched suspended few-layer graphene.
    Schäffel F; Wilson M; Bachmatiuk A; Rümmeli MH; Queitsch U; Rellinghaus B; Briggs GA; Warner JH
    ACS Nano; 2011 Mar; 5(3):1975-83. PubMed ID: 21344881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anisotropic hydrogen etching of chemical vapor deposited graphene.
    Zhang Y; Li Z; Kim P; Zhang L; Zhou C
    ACS Nano; 2012 Jan; 6(1):126-32. PubMed ID: 22010852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene Ingestion and Regrowth on "Carbon-Starved" Metal Electrodes.
    Wang MS; Cheng Y; Zhao L; Gautam UK; Golberg D
    ACS Nano; 2017 Oct; 11(10):10575-10582. PubMed ID: 28953352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shaping and Edge Engineering of Few-Layered Freestanding Graphene Sheets in a Transmission Electron Microscope.
    Zhao L; Luo G; Cheng Y; Li X; Zhou S; Luo C; Wang J; Liao HG; Golberg D; Wang MS
    Nano Lett; 2020 Apr; 20(4):2279-2287. PubMed ID: 31846340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Examining the stability of folded graphene edges against electron beam induced sputtering with atomic resolution.
    Warner JH; Rümmeli MH; Bachmatiuk A; Büchner B
    Nanotechnology; 2010 Aug; 21(32):325702. PubMed ID: 20639589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallographic tailoring of graphene by nonmetal SiO(x) nanoparticles.
    Gao L; Ren W; Liu B; Wu ZS; Jiang C; Cheng HM
    J Am Chem Soc; 2009 Oct; 131(39):13934-6. PubMed ID: 19743852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature dependence of the reconstruction of zigzag edges in graphene.
    He K; Robertson AW; Fan Y; Allen CS; Lin YC; Suenaga K; Kirkland AI; Warner JH
    ACS Nano; 2015 May; 9(5):4786-95. PubMed ID: 25880335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic-scale imaging of carbon nanofibre growth.
    Helveg S; López-Cartes C; Sehested J; Hansen PL; Clausen BS; Rostrup-Nielsen JR; Abild-Pedersen F; Nørskov JK
    Nature; 2004 Jan; 427(6973):426-9. PubMed ID: 14749826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of the number of graphene layers on the atomic resolution images obtained from aberration-corrected high resolution transmission electron microscopy.
    Warner JH
    Nanotechnology; 2010 Jun; 21(25):255707. PubMed ID: 20516582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic process of oxidative etching in monolayer molybdenum disulfide.
    Lv D; Wang H; Zhu D; Lin J; Yin G; Lin F; Zhang Z; Jin C
    Sci Bull (Beijing); 2017 Jun; 62(12):846-851. PubMed ID: 36659318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anisotropic etching and nanoribbon formation in single-layer graphene.
    Campos LC; Manfrinato VR; Sanchez-Yamagishi JD; Kong J; Jarillo-Herrero P
    Nano Lett; 2009 Jul; 9(7):2600-4. PubMed ID: 19527022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A platform for in-situ multi-probe electronic measurements and modification of nanodevices inside a transmission electron microscope.
    Xu TT; Ning ZY; Shi TW; Fu MQ; Wang JY; Chen Q
    Nanotechnology; 2014 Jun; 25(22):225702. PubMed ID: 24830433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the thermal stability of metallic and non-metallic nanoparticles using a novel graphene oxide-based transmission electron microscopy heating-membrane.
    Batra NM; Mahalingam DK; Doggali P; Nunes SP; Costa PMFJ
    Nanotechnology; 2022 Mar; 33(25):. PubMed ID: 35148519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in atomic resolution in situ environmental transmission electron microscopy and 1A aberration corrected in situ electron microscopy.
    Gai PL; Boyes ED
    Microsc Res Tech; 2009 Mar; 72(3):153-64. PubMed ID: 19140163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron-Driven Metal Oxide Effusion and Graphene Gasification at Room Temperature.
    Ta HQ; Bachmatiuk A; Warner JH; Zhao L; Sun Y; Zhao J; Gemming T; Trzebicka B; Liu Z; Pribat D; Rümmeli MH
    ACS Nano; 2016 Jun; 10(6):6323-30. PubMed ID: 27218864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical Breakdown of Suspended Mono- and Few-Layer Tungsten Disulfide via Sulfur Depletion Identified by in Situ Atomic Imaging.
    Fan Y; Robertson AW; Zhou Y; Chen Q; Zhang X; Browning ND; Zheng H; Rümmeli MH; Warner JH
    ACS Nano; 2017 Sep; 11(9):9435-9444. PubMed ID: 28829575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of Transition-Metal Nanoparticle Catalytic Graphene Cutting.
    Ma L; Wang J; Yip J; Ding F
    J Phys Chem Lett; 2014 Apr; 5(7):1192-7. PubMed ID: 26274470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Examining co-based nanocrystals on graphene using low-voltage aberration-corrected transmission electron microscopy.
    Warner JH; Rümmeli MH; Bachmatiuk A; Wilson M; Büchner B
    ACS Nano; 2010 Jan; 4(1):470-6. PubMed ID: 20020749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.