BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 25361579)

  • 1. Membrane-anchored human Rab GTPases directly mediate membrane tethering in vitro.
    Tamura N; Mima J
    Biol Open; 2014 Oct; 3(11):1108-15. PubMed ID: 25361579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homotypic and heterotypic
    Segawa K; Tamura N; Mima J
    J Biol Chem; 2019 May; 294(19):7722-7739. PubMed ID: 30910814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstitution of membrane tethering mediated by Rab-family small GTPases.
    Mima J
    Biophys Rev; 2018 Apr; 10(2):543-549. PubMed ID: 29204879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human Rab small GTPase- and class V myosin-mediated membrane tethering in a chemically defined reconstitution system.
    Inoshita M; Mima J
    J Biol Chem; 2017 Nov; 292(45):18500-18517. PubMed ID: 28939769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane Tethering Potency of Rab-Family Small GTPases Is Defined by the C-Terminal Hypervariable Regions.
    Ueda S; Tamura N; Mima J
    Front Cell Dev Biol; 2020; 8():577342. PubMed ID: 33102484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Small GTPase Arf6 Functions as a Membrane Tether in a Chemically-Defined Reconstitution System.
    Fujibayashi K; Mima J
    Front Cell Dev Biol; 2021; 9():628910. PubMed ID: 33585484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assemblies of Rab- and Arf-family small GTPases on lipid bilayers in membrane tethering.
    Mima J
    Biophys Rev; 2021 Aug; 13(4):531-539. PubMed ID: 34471437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RAB GTPases and their effectors in plant endosomal transport.
    Minamino N; Ueda T
    Curr Opin Plant Biol; 2019 Dec; 52():61-68. PubMed ID: 31454706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rabs and their effectors: achieving specificity in membrane traffic.
    Grosshans BL; Ortiz D; Novick P
    Proc Natl Acad Sci U S A; 2006 Aug; 103(32):11821-7. PubMed ID: 16882731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methods for Establishing Rab Knockout MDCK Cells.
    Kinoshita R; Homma Y; Fukuda M
    Methods Mol Biol; 2021; 2293():243-256. PubMed ID: 34453722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward a comprehensive map of the effectors of rab GTPases.
    Gillingham AK; Sinka R; Torres IL; Lilley KS; Munro S
    Dev Cell; 2014 Nov; 31(3):358-373. PubMed ID: 25453831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rab GTPases: The principal players in crafting the regulatory landscape of endosomal trafficking.
    Zhang J; Jiang Z; Shi A
    Comput Struct Biotechnol J; 2022; 20():4464-4472. PubMed ID: 36051867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular functions of Rab GTPases at a glance.
    Zhen Y; Stenmark H
    J Cell Sci; 2015 Sep; 128(17):3171-6. PubMed ID: 26272922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How can mammalian Rab small GTPases be comprehensively analyzed?: Development of new tools to comprehensively analyze mammalian Rabs in membrane traffic.
    Fukuda M
    Histol Histopathol; 2010 Nov; 25(11):1473-80. PubMed ID: 20865669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Saccharomyces cerevisiae Rab-GDI displacement factor ortholog Yip3p forms distinct complexes with the Ypt1 Rab GTPase and the reticulon Rtn1p.
    Geng J; Shin ME; Gilbert PM; Collins RN; Burd CG
    Eukaryot Cell; 2005 Jul; 4(7):1166-74. PubMed ID: 16002643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The HOPS/class C Vps complex tethers membranes by binding to one Rab GTPase in each apposed membrane.
    Ho R; Stroupe C
    Mol Biol Cell; 2015 Jul; 26(14):2655-63. PubMed ID: 25995379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The functions of Rab GTPases in plant membrane traffic.
    Woollard AA; Moore I
    Curr Opin Plant Biol; 2008 Dec; 11(6):610-9. PubMed ID: 18952493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Rab GTPases networks in membrane traffic in Saccharomyces cerevisiae].
    Nagano M; Toshima JY; Toshima J
    Yakugaku Zasshi; 2015; 135(3):483-92. PubMed ID: 25759056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rab cascades and tethering factors in the endomembrane system.
    Markgraf DF; Peplowska K; Ungermann C
    FEBS Lett; 2007 May; 581(11):2125-30. PubMed ID: 17316615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane dynamics and fusion at late endosomes and vacuoles--Rab regulation, multisubunit tethering complexes and SNAREs.
    Epp N; Rethmeier R; Krämer L; Ungermann C
    Eur J Cell Biol; 2011 Sep; 90(9):779-85. PubMed ID: 21683469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.