These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
442 related articles for article (PubMed ID: 25361952)
1. A functional and evolutionary perspective on transcription factor binding in Arabidopsis thaliana. Heyndrickx KS; Van de Velde J; Wang C; Weigel D; Vandepoele K Plant Cell; 2014 Oct; 26(10):3894-910. PubMed ID: 25361952 [TBL] [Abstract][Full Text] [Related]
2. Combinatorial activities of SHORT VEGETATIVE PHASE and FLOWERING LOCUS C define distinct modes of flowering regulation in Arabidopsis. Mateos JL; Madrigal P; Tsuda K; Rawat V; Richter R; Romera-Branchat M; Fornara F; Schneeberger K; Krajewski P; Coupland G Genome Biol; 2015 Feb; 16(1):31. PubMed ID: 25853185 [TBL] [Abstract][Full Text] [Related]
3. Evening expression of arabidopsis GIGANTEA is controlled by combinatorial interactions among evolutionarily conserved regulatory motifs. Berns MC; Nordström K; Cremer F; Tóth R; Hartke M; Simon S; Klasen JR; Bürstel I; Coupland G Plant Cell; 2014 Oct; 26(10):3999-4018. PubMed ID: 25361953 [TBL] [Abstract][Full Text] [Related]
4. Determinants of correlated expression of transcription factors and their target genes. Zaborowski AB; Walther D Nucleic Acids Res; 2020 Nov; 48(20):11347-11369. PubMed ID: 33104784 [TBL] [Abstract][Full Text] [Related]
5. In planta analysis of a cis-regulatory cytokinin response motif in Arabidopsis and identification of a novel enhancer sequence. Ramireddy E; Brenner WG; Pfeifer A; Heyl A; Schmülling T Plant Cell Physiol; 2013 Jul; 54(7):1079-92. PubMed ID: 23620480 [TBL] [Abstract][Full Text] [Related]
6. Identification of direct targets of FUSCA3, a key regulator of Arabidopsis seed development. Wang F; Perry SE Plant Physiol; 2013 Mar; 161(3):1251-64. PubMed ID: 23314941 [TBL] [Abstract][Full Text] [Related]
7. Prediction of regulatory interactions from genome sequences using a biophysical model for the Arabidopsis LEAFY transcription factor. Moyroud E; Minguet EG; Ott F; Yant L; Posé D; Monniaux M; Blanchet S; Bastien O; Thévenon E; Weigel D; Schmid M; Parcy F Plant Cell; 2011 Apr; 23(4):1293-306. PubMed ID: 21515819 [TBL] [Abstract][Full Text] [Related]
8. A transcriptional dynamic network during Arabidopsis thaliana pollen development. Wang J; Qiu X; Li Y; Deng Y; Shi T BMC Syst Biol; 2011; 5 Suppl 3(Suppl 3):S8. PubMed ID: 22784627 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis. Tao Z; Shen L; Liu C; Liu L; Yan Y; Yu H Plant J; 2012 May; 70(4):549-61. PubMed ID: 22268548 [TBL] [Abstract][Full Text] [Related]
11. Toward the identification and regulation of the Arabidopsis thaliana ABI3 regulon. Mönke G; Seifert M; Keilwagen J; Mohr M; Grosse I; Hähnel U; Junker A; Weisshaar B; Conrad U; Bäumlein H; Altschmied L Nucleic Acids Res; 2012 Sep; 40(17):8240-54. PubMed ID: 22730287 [TBL] [Abstract][Full Text] [Related]
12. Analysis of the DNA-Binding Activities of the Arabidopsis R2R3-MYB Transcription Factor Family by One-Hybrid Experiments in Yeast. Kelemen Z; Sebastian A; Xu W; Grain D; Salsac F; Avon A; Berger N; Tran J; Dubreucq B; Lurin C; Lepiniec L; Contreras-Moreira B; Dubos C PLoS One; 2015; 10(10):e0141044. PubMed ID: 26484765 [TBL] [Abstract][Full Text] [Related]
13. Genome-Wide Targets Regulated by the OsMADS1 Transcription Factor Reveals Its DNA Recognition Properties. Khanday I; Das S; Chongloi GL; Bansal M; Grossniklaus U; Vijayraghavan U Plant Physiol; 2016 Sep; 172(1):372-88. PubMed ID: 27457124 [TBL] [Abstract][Full Text] [Related]
14. Positional distribution of transcription factor binding sites in Arabidopsis thaliana. Yu CP; Lin JJ; Li WH Sci Rep; 2016 Apr; 6():25164. PubMed ID: 27117388 [TBL] [Abstract][Full Text] [Related]
15. Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15. Zheng Y; Ren N; Wang H; Stromberg AJ; Perry SE Plant Cell; 2009 Sep; 21(9):2563-77. PubMed ID: 19767455 [TBL] [Abstract][Full Text] [Related]
16. Genome-Wide Analysis of the Distinct Types of Chromatin Interactions in Arabidopsis thaliana. Wang J; Zhou Y; Li X; Meng X; Fan M; Chen H; Xue J; Chen M Plant Cell Physiol; 2017 Jan; 58(1):57-70. PubMed ID: 28064247 [TBL] [Abstract][Full Text] [Related]
17. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Wang J; Zhuang J; Iyer S; Lin X; Whitfield TW; Greven MC; Pierce BG; Dong X; Kundaje A; Cheng Y; Rando OJ; Birney E; Myers RM; Noble WS; Snyder M; Weng Z Genome Res; 2012 Sep; 22(9):1798-812. PubMed ID: 22955990 [TBL] [Abstract][Full Text] [Related]
18. The Use of the Chromatin Immunoprecipitation Technique for In Vivo Identification of Plant Protein-DNA Interactions. Jarillo JA; Komar DN; Piñeiro M Methods Mol Biol; 2018; 1794():323-334. PubMed ID: 29855969 [TBL] [Abstract][Full Text] [Related]
19. A DNA-binding-site landscape and regulatory network analysis for NAC transcription factors in Arabidopsis thaliana. Lindemose S; Jensen MK; Van de Velde J; O'Shea C; Heyndrickx KS; Workman CT; Vandepoele K; Skriver K; De Masi F Nucleic Acids Res; 2014 Jul; 42(12):7681-93. PubMed ID: 24914054 [TBL] [Abstract][Full Text] [Related]
20. Divergence of regulatory networks governed by the orthologous transcription factors FLC and PEP1 in Brassicaceae species. Mateos JL; Tilmes V; Madrigal P; Severing E; Richter R; Rijkenberg CWM; Krajewski P; Coupland G Proc Natl Acad Sci U S A; 2017 Dec; 114(51):E11037-E11046. PubMed ID: 29203652 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]