These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Subtracting the sequence bias from partially digested MNase-seq data reveals a general contribution of TFIIS to nucleosome positioning. Gutiérrez G; Millán-Zambrano G; Medina DA; Jordán-Pla A; Pérez-Ortín JE; Peñate X; Chávez S Epigenetics Chromatin; 2017 Dec; 10(1):58. PubMed ID: 29212533 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the Nucleosome Landscape by Micrococcal Nuclease-Sequencing (MNase-seq). Hoeijmakers WAM; Bártfai R Methods Mol Biol; 2018; 1689():83-101. PubMed ID: 29027167 [TBL] [Abstract][Full Text] [Related]
6. Genome-wide Nucleosome Occupancy and Organization Modulates the Plasticity of Gene Transcriptional Status in Maize. Chen J; Li E; Zhang X; Dong X; Lei L; Song W; Zhao H; Lai J Mol Plant; 2017 Jul; 10(7):962-974. PubMed ID: 28487258 [TBL] [Abstract][Full Text] [Related]
8. DNA Accessibility by MNase Digestions. Farrants AÖ Methods Mol Biol; 2018; 1689():77-82. PubMed ID: 29027166 [TBL] [Abstract][Full Text] [Related]
9. High-Resolution ChIP-MNase Mapping of Nucleosome Positions at Selected Genomic Loci and Alleles. van Essen D; Oruba A; Saccani S Methods Mol Biol; 2021; 2351():123-145. PubMed ID: 34382187 [TBL] [Abstract][Full Text] [Related]
10. Single-Assay Profiling of Nucleosome Occupancy and Chromatin Accessibility. Cook A; Mieczkowski J; Tolstorukov MY Curr Protoc Mol Biol; 2017 Oct; 120():21.34.1-21.34.18. PubMed ID: 28967996 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide prediction of nucleosome occupancy in maize reveals plant chromatin structural features at genes and other elements at multiple scales. Fincher JA; Vera DL; Hughes DD; McGinnis KM; Dennis JH; Bass HW Plant Physiol; 2013 Jun; 162(2):1127-41. PubMed ID: 23572549 [TBL] [Abstract][Full Text] [Related]
12. Analysis of chromatin organization by deep sequencing technologies. Platt JL; Kent NA; Harwood AJ; Kimmel AR Methods Mol Biol; 2013; 983():173-83. PubMed ID: 23494307 [TBL] [Abstract][Full Text] [Related]
13. Asymmetric nucleosomes flank promoters in the budding yeast genome. Ramachandran S; Zentner GE; Henikoff S Genome Res; 2015 Mar; 25(3):381-90. PubMed ID: 25491770 [TBL] [Abstract][Full Text] [Related]
14. Genome-wide chromatin mapping with size resolution reveals a dynamic sub-nucleosomal landscape in Arabidopsis. Pass DA; Sornay E; Marchbank A; Crawford MR; Paszkiewicz K; Kent NA; Murray JAH PLoS Genet; 2017 Sep; 13(9):e1006988. PubMed ID: 28902852 [TBL] [Abstract][Full Text] [Related]
15. MNase Profiling of Promoter Chromatin in Cole L; Dennis J G3 (Bethesda); 2020 Jul; 10(7):2171-2178. PubMed ID: 32404364 [TBL] [Abstract][Full Text] [Related]
16. Distinct features of lamin A-interacting chromatin domains mapped by ChIP-sequencing from sonicated or micrococcal nuclease-digested chromatin. Lund EG; Duband-Goulet I; Oldenburg A; Buendia B; Collas P Nucleus; 2015; 6(1):30-9. PubMed ID: 25602132 [TBL] [Abstract][Full Text] [Related]
17. Measuring changes in chromatin using micrococcal nuclease. Steward N; Sano H Methods Mol Biol; 2004; 287():65-75. PubMed ID: 15273404 [TBL] [Abstract][Full Text] [Related]
18. Application of MNase-Seq in the Global Mapping of Nucleosome Positioning in Plants. Zhang W; Jiang J Methods Mol Biol; 2018; 1830():353-366. PubMed ID: 30043381 [TBL] [Abstract][Full Text] [Related]
19. Differential chromatin association and nucleosome binding of the maize HMGA, HMGB, and SSRP1 proteins. Lichota J; Grasser KD Biochemistry; 2001 Jul; 40(26):7860-7. PubMed ID: 11425313 [TBL] [Abstract][Full Text] [Related]