These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 25361960)

  • 21. The chloroplast sulfate transport system in the green alga Chlamydomonas reinhardtii.
    Lindberg P; Melis A
    Planta; 2008 Nov; 228(6):951-61. PubMed ID: 18682979
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Photochemical activity of photosystem II and hydrogen photoproduction in sulfur-deprived Chlamydomonas reinhardtii mutants D1-R323D and D1-R323L].
    Makarova VV; Kosourov SN; Krendeleva TE; Kukarskikh GP; Ghirardi ML; Seibert M; Rubin AB
    Biofizika; 2005; 50(6):1070-8. PubMed ID: 16358786
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control of cell division by a retinoblastoma protein homolog in Chlamydomonas.
    Umen JG; Goodenough UW
    Genes Dev; 2001 Jul; 15(13):1652-61. PubMed ID: 11445540
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Drought stress in maize causes differential acclimation responses of glutathione and sulfur metabolism in leaves and roots.
    Ahmad N; Malagoli M; Wirtz M; Hell R
    BMC Plant Biol; 2016 Nov; 16(1):247. PubMed ID: 27829370
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Truncated hemoglobin 1 is a new player in Chlamydomonas reinhardtii acclimation to sulfur deprivation.
    Minaeva E; Zalutskaya Z; Filina V; Ermilova E
    PLoS One; 2017; 12(10):e0186851. PubMed ID: 29049377
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chromate differentially affects the expression of a high-affinity sulfate transporter and isoforms of components of the sulfate assimilatory pathway in Zea mays (L.).
    Schiavon M; Wirtz M; Borsa P; Quaggiotti S; Hell R; Malagoli M
    Plant Biol (Stuttg); 2007 Sep; 9(5):662-71. PubMed ID: 17853366
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-based approaches to understanding phosphorus deprivation responses and PSR1 control in Chlamydomonas reinhardtii.
    Moseley JL; Chang CW; Grossman AR
    Eukaryot Cell; 2006 Jan; 5(1):26-44. PubMed ID: 16400166
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insights into the survival of Chlamydomonas reinhardtii during sulfur starvation based on microarray analysis of gene expression.
    Zhang Z; Shrager J; Jain M; Chang CW; Vallon O; Grossman AR
    Eukaryot Cell; 2004 Oct; 3(5):1331-48. PubMed ID: 15470261
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromate toxicity and the role of sulfur.
    Holland SL; Avery SV
    Metallomics; 2011 Nov; 3(11):1119-23. PubMed ID: 21804974
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SULTR3;1 is a chloroplast-localized sulfate transporter in Arabidopsis thaliana.
    Cao MJ; Wang Z; Wirtz M; Hell R; Oliver DJ; Xiang CB
    Plant J; 2013 Feb; 73(4):607-16. PubMed ID: 23095126
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nitrite transport to the chloroplast in Chlamydomonas reinhardtii: molecular evidence for a regulated process.
    Galván A; Rexach J; Mariscal V; Fernández E
    J Exp Bot; 2002 Apr; 53(370):845-53. PubMed ID: 11912227
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sac1, a putative regulator that is critical for survival of Chlamydomonas reinhardtii during sulfur deprivation.
    Davies JP; Yildiz FH; Grossman A
    EMBO J; 1996 May; 15(9):2150-9. PubMed ID: 8641280
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The central role of a SNRK2 kinase in sulfur deprivation responses.
    Gonzalez-Ballester D; Pollock SV; Pootakham W; Grossman AR
    Plant Physiol; 2008 May; 147(1):216-27. PubMed ID: 18326790
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cell size checkpoint control by the retinoblastoma tumor suppressor pathway.
    Fang SC; de los Reyes C; Umen JG
    PLoS Genet; 2006 Oct; 2(10):e167. PubMed ID: 17040130
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Leaf developmental stage affects sulfate depletion and specific sulfate transporter expression during sulfur deprivation in Brassica napus L.
    Parmar S; Buchner P; Hawkesford MJ
    Plant Biol (Stuttg); 2007 Sep; 9(5):647-53. PubMed ID: 17853364
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A high-affinity molybdate transporter in eukaryotes.
    Tejada-Jiménez M; Llamas A; Sanz-Luque E; Galván A; Fernández E
    Proc Natl Acad Sci U S A; 2007 Dec; 104(50):20126-30. PubMed ID: 18077439
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of a mutant of Chlamydomonas reinhardtii deficient in the molybdenum cofactor.
    Li W; Fingrut DR; Maxwell DP
    Physiol Plant; 2009 Jul; 136(3):336-50. PubMed ID: 19470097
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparison of sulfate and selenium accumulation in relation to the expression of sulfate transporter genes in Astragalus species.
    Cabannes E; Buchner P; Broadley MR; Hawkesford MJ
    Plant Physiol; 2011 Dec; 157(4):2227-39. PubMed ID: 21972267
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nutrient scavenging and energy management: acclimation responses in nitrogen and sulfur deprived Chlamydomonas.
    Saroussi S; Sanz-Luque E; Kim RG; Grossman AR
    Curr Opin Plant Biol; 2017 Oct; 39():114-122. PubMed ID: 28692856
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SUMO Protease SMT7 Modulates Ribosomal Protein L30 and Regulates Cell-Size Checkpoint Function.
    Lin YL; Chung CL; Chen MH; Chen CH; Fang SC
    Plant Cell; 2020 Apr; 32(4):1285-1307. PubMed ID: 32060174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.