These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 25361976)

  • 1. Computational analysis of amino acids and their sidechain analogs in crowded solutions of RNA nucleobases with implications for the mRNA-protein complementarity hypothesis.
    Hajnic M; Osorio JI; Zagrovic B
    Nucleic Acids Res; 2014 Dec; 42(21):12984-94. PubMed ID: 25361976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction preferences between nucleobase mimetics and amino acids in aqueous solutions.
    Hajnic M; Osorio JI; Zagrovic B
    Phys Chem Chem Phys; 2015 Sep; 17(33):21414-22. PubMed ID: 26219945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absolute binding-free energies between standard RNA/DNA nucleobases and amino-acid sidechain analogs in different environments.
    de Ruiter A; Zagrovic B
    Nucleic Acids Res; 2015 Jan; 43(2):708-18. PubMed ID: 25550435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence signatures of direct complementarity between mRNAs and cognate proteins on multiple levels.
    Hlevnjak M; Polyansky AA; Zagrovic B
    Nucleic Acids Res; 2012 Oct; 40(18):8874-82. PubMed ID: 22844092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence of direct complementary interactions between messenger RNAs and their cognate proteins.
    Polyansky AA; Zagrovic B
    Nucleic Acids Res; 2013 Oct; 41(18):8434-43. PubMed ID: 23868089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. mRNA/protein sequence complementarity and its determinants: The impact of affinity scales.
    Bartonek L; Zagrovic B
    PLoS Comput Biol; 2017 Jul; 13(7):e1005648. PubMed ID: 28750009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteome-wide analysis reveals clues of complementary interactions between mRNAs and their cognate proteins as the physicochemical foundation of the genetic code.
    Polyansky AA; Hlevnjak M; Zagrovic B
    RNA Biol; 2013 Aug; 10(8):1248-54. PubMed ID: 23945356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence of Binding Free Energies between RNA Nucleobases and Protein Side Chains on Local Dielectric Properties.
    de Ruiter A; Polyansky AA; Zagrovic B
    J Chem Theory Comput; 2017 Sep; 13(9):4504-4513. PubMed ID: 28768101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Malleable nature of mRNA-protein compositional complementarity and its functional significance.
    Hlevnjak M; Zagrovic B
    Nucleic Acids Res; 2015 Mar; 43(6):3012-21. PubMed ID: 25753660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the Contribution of Protein Spatial Organization to the Physicochemical Interconnection between Proteins and Their Cognate mRNAs.
    Beier A; Zagrovic B; Polyansky AA
    Life (Basel); 2014 Nov; 4(4):788-99. PubMed ID: 25423140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting RNA-binding sites in proteins using the interaction propensity of amino acid triplets.
    Yun MR; Byun Y; Han K
    Protein Pept Lett; 2010 Sep; 17(9):1102-10. PubMed ID: 20509851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acid residue doublet propensity in the protein-RNA interface and its application to RNA interface prediction.
    Kim OT; Yura K; Go N
    Nucleic Acids Res; 2006; 34(22):6450-60. PubMed ID: 17130160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure based approach for understanding organism specific recognition of protein-RNA complexes.
    Nagarajan R; Chothani SP; Ramakrishnan C; Sekijima M; Gromiha MM
    Biol Direct; 2015 Mar; 10():8. PubMed ID: 25886642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anatomy of noncovalent interactions between the nucleobases or ribose and π-containing amino acids in RNA-protein complexes.
    Wilson KA; Kung RW; D'souza S; Wetmore SD
    Nucleic Acids Res; 2021 Feb; 49(4):2213-2225. PubMed ID: 33544852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovering the interaction propensities of amino acids and nucleotides from protein-RNA complexes.
    Jeong E; Kim H; Lee SW; Han K
    Mol Cells; 2003 Oct; 16(2):161-7. PubMed ID: 14651256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated structural biology to unravel molecular mechanisms of protein-RNA recognition.
    Schlundt A; Tants JN; Sattler M
    Methods; 2017 Apr; 118-119():119-136. PubMed ID: 28315749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How to understand atomistic molecular dynamics simulations of RNA and protein-RNA complexes?
    Šponer J; Krepl M; Banáš P; Kührová P; Zgarbová M; Jurečka P; Havrila M; Otyepka M
    Wiley Interdiscip Rev RNA; 2017 May; 8(3):. PubMed ID: 27863061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA-protein interactions in an unstructured context.
    Zagrovic B; Bartonek L; Polyansky AA
    FEBS Lett; 2018 Sep; 592(17):2901-2916. PubMed ID: 29851074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-RNA interactions: structural characteristics and hotspot amino acids.
    Krüger DM; Neubacher S; Grossmann TN
    RNA; 2018 Nov; 24(11):1457-1465. PubMed ID: 30093489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.