BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 25362051)

  • 21. Evidence for the rate of the final step in the bacteriorhodopsin photocycle being controlled by the proton release group: R134H mutant.
    Lu M; Balashov SP; Ebrey TG; Chen N; Chen Y; Menick DR; Crouch RK
    Biochemistry; 2000 Mar; 39(9):2325-31. PubMed ID: 10694399
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of a transmembrane pH gradient on protonation probabilities of bacteriorhodopsin: the structural basis of the back-pressure effect.
    Calimet N; Ullmann GM
    J Mol Biol; 2004 Jun; 339(3):571-89. PubMed ID: 15147843
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrogen-bonding interaction of the protonated schiff base with halides in a chloride-pumping bacteriorhodopsin mutant.
    Shibata M; Ihara K; Kandori H
    Biochemistry; 2006 Sep; 45(35):10633-40. PubMed ID: 16939215
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arginine-82 regulates the pKa of the group responsible for the light-driven proton release in bacteriorhodopsin.
    Govindjee R; Misra S; Balashov SP; Ebrey TG; Crouch RK; Menick DR
    Biophys J; 1996 Aug; 71(2):1011-23. PubMed ID: 8842238
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of the membrane potential on the protonation of bacteriorhodopsin: insights from electrostatic calculations into the regulation of proton pumping.
    Bombarda E; Becker T; Ullmann GM
    J Am Chem Soc; 2006 Sep; 128(37):12129-39. PubMed ID: 16967962
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of protein-bound water molecules in microbial rhodopsins.
    Gerwert K; Freier E; Wolf S
    Biochim Biophys Acta; 2014 May; 1837(5):606-13. PubMed ID: 24055285
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrostatic Influence on Photoisomerization in Bacteriorhodopsin and Halorhodopsin.
    Punwong C; Hannongbua S; Martínez TJ
    J Phys Chem B; 2019 Jun; 123(23):4850-4857. PubMed ID: 31149826
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A transporter converted into a sensor, a phototaxis signaling mutant of bacteriorhodopsin at 3.0 Å.
    Spudich EN; Ozorowski G; Schow EV; Tobias DJ; Spudich JL; Luecke H
    J Mol Biol; 2012 Jan; 415(3):455-63. PubMed ID: 22123198
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conversion of bacteriorhodopsin into a chloride ion pump.
    Sasaki J; Brown LS; Chon YS; Kandori H; Maeda A; Needleman R; Lanyi JK
    Science; 1995 Jul; 269(5220):73-5. PubMed ID: 7604281
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Excitation of the M intermediates of bacteriorhodopsin.
    Tóth-Boconádi R; Dér A; Fábián L; Taneva SG; Keszthelyi L
    Photochem Photobiol; 2009; 85(2):609-13. PubMed ID: 19222799
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of genetic replacements of charged and H-bonding residues in the retinal pocket on Ca2+ binding to deionized bacteriorhodopsin.
    Zhang YN; el-Sayed MA; Bonet ML; Lanyi JK; Chang M; Ni B; Needleman R
    Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1445-9. PubMed ID: 8434004
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Halide binding by the D212N mutant of Bacteriorhodopsin affects hydrogen bonding of water in the active site.
    Shibata M; Yoshitsugu M; Mizuide N; Ihara K; Kandori H
    Biochemistry; 2007 Jun; 46(25):7525-35. PubMed ID: 17547422
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbial Halorhodopsins: Light-Driven Chloride Pumps.
    Engelhard C; Chizhov I; Siebert F; Engelhard M
    Chem Rev; 2018 Nov; 118(21):10629-10645. PubMed ID: 29882660
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystallinity of purple membranes comprising the chloride-pumping bacteriorhodopsin variant D85T and its modulation by pH and salinity.
    Rhinow D; Chizhik I; Baumann RP; Noll F; Hampp N
    J Phys Chem B; 2010 Nov; 114(46):15424-8. PubMed ID: 21033713
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analogies between halorhodopsin and bacteriorhodopsin.
    Váró G
    Biochim Biophys Acta; 2000 Aug; 1460(1):220-9. PubMed ID: 10984602
    [TBL] [Abstract][Full Text] [Related]  

  • 36. G-protein-coupled receptor domain overexpression in Halobacterium salinarum: long-range transmembrane interactions in heptahelical membrane proteins.
    Jaakola VP; Rehn M; Moeller M; Alexiev U; Goldman A; Turner GJ
    Proteins; 2005 Aug; 60(3):412-23. PubMed ID: 15971205
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing origins of molecular interactions stabilizing the membrane proteins halorhodopsin and bacteriorhodopsin.
    Cisneros DA; Oesterhelt D; Müller DJ
    Structure; 2005 Feb; 13(2):235-42. PubMed ID: 15698567
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anion-protein interactions during halorhodopsin pumping: halide binding at the protonated Schiff base.
    Walter TJ; Braiman MS
    Biochemistry; 1994 Feb; 33(7):1724-33. PubMed ID: 8110775
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrostatic coupling between retinal isomerization and the ionization state of Glu-204: a general mechanism for proton release in bacteriorhodopsin.
    Sampogna RV; Honig B
    Biophys J; 1996 Sep; 71(3):1165-71. PubMed ID: 8873990
    [TBL] [Abstract][Full Text] [Related]  

  • 40. D38 is an essential part of the proton translocation pathway in bacteriorhodopsin.
    Riesle J; Oesterhelt D; Dencher NA; Heberle J
    Biochemistry; 1996 May; 35(21):6635-43. PubMed ID: 8639612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.