BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 25362149)

  • 21. HDAC5 catalytic activity suppresses cardiomyocyte oxidative stress and NRF2 target gene expression.
    Hu T; Schreiter FC; Bagchi RA; Tatman PD; Hannink M; McKinsey TA
    J Biol Chem; 2019 May; 294(21):8640-8652. PubMed ID: 30962285
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [The mechanism underlying histone deacetylases regulating cardiac hypertrophy].
    Ren L; Wu XS; Li YQ
    Yi Chuan; 2020 Jun; 42(6):536-547. PubMed ID: 32694112
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of class I histone deacetylases blunts cardiac hypertrophy through TSC2-dependent mTOR repression.
    Morales CR; Li DL; Pedrozo Z; May HI; Jiang N; Kyrychenko V; Cho GW; Kim SY; Wang ZV; Rotter D; Rothermel BA; Schneider JW; Lavandero S; Gillette TG; Hill JA
    Sci Signal; 2016 Apr; 9(422):ra34. PubMed ID: 27048565
    [TBL] [Abstract][Full Text] [Related]  

  • 24. HDAC inhibition attenuates cardiac hypertrophy by acetylation and deacetylation of target genes.
    Ooi JY; Tuano NK; Rafehi H; Gao XM; Ziemann M; Du XJ; El-Osta A
    Epigenetics; 2015; 10(5):418-30. PubMed ID: 25941940
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PKA phosphorylates histone deacetylase 5 and prevents its nuclear export, leading to the inhibition of gene transcription and cardiomyocyte hypertrophy.
    Ha CH; Kim JY; Zhao J; Wang W; Jhun BS; Wong C; Jin ZG
    Proc Natl Acad Sci U S A; 2010 Aug; 107(35):15467-72. PubMed ID: 20716686
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy.
    Kong Y; Tannous P; Lu G; Berenji K; Rothermel BA; Olson EN; Hill JA
    Circulation; 2006 Jun; 113(22):2579-88. PubMed ID: 16735673
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5.
    Vega RB; Harrison BC; Meadows E; Roberts CR; Papst PJ; Olson EN; McKinsey TA
    Mol Cell Biol; 2004 Oct; 24(19):8374-85. PubMed ID: 15367659
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cardiac HDAC6 catalytic activity is induced in response to chronic hypertension.
    Lemon DD; Horn TR; Cavasin MA; Jeong MY; Haubold KW; Long CS; Irwin DC; McCune SA; Chung E; Leinwand LA; McKinsey TA
    J Mol Cell Cardiol; 2011 Jul; 51(1):41-50. PubMed ID: 21539845
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective inhibition of HDAC2 by magnesium valproate attenuates cardiac hypertrophy.
    Raghunathan S; Goyal RK; Patel BM
    Can J Physiol Pharmacol; 2017 Mar; 95(3):260-267. PubMed ID: 28177689
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Myofibril growth during cardiac hypertrophy is regulated through dual phosphorylation and acetylation of the actin capping protein CapZ.
    Lin YH; Warren CM; Li J; McKinsey TA; Russell B
    Cell Signal; 2016 Aug; 28(8):1015-24. PubMed ID: 27185186
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Zinc-dependent histone deacetylases: Potential therapeutic targets for arterial hypertension.
    Kee HJ; Kim I; Jeong MH
    Biochem Pharmacol; 2022 Aug; 202():115111. PubMed ID: 35640713
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of histone deacetylase 2 and its posttranslational modifications in cardiac hypertrophy.
    Eom GH; Kook H
    BMB Rep; 2015 Mar; 48(3):131-8. PubMed ID: 25388210
    [TBL] [Abstract][Full Text] [Related]  

  • 33. HATs off to Hop: recruitment of a class I histone deacetylase incriminates a novel transcriptional pathway that opposes cardiac hypertrophy.
    Hamamori Y; Schneider MD
    J Clin Invest; 2003 Sep; 112(6):824-6. PubMed ID: 12975465
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-sirtuin histone deacetylases in the control of cardiac aging.
    Ferguson BS; McKinsey TA
    J Mol Cell Cardiol; 2015 Jun; 83():14-20. PubMed ID: 25791169
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Class I HDACs control a JIP1-dependent pathway for kinesin-microtubule binding in cardiomyocytes.
    Blakeslee WW; Lin YH; Stratton MS; Tatman PD; Hu T; Ferguson BS; McKinsey TA
    J Mol Cell Cardiol; 2017 Nov; 112():74-82. PubMed ID: 28886967
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Crosstalk between Acetylation and Phosphorylation: Emerging New Roles for HDAC Inhibitors in the Heart.
    Habibian J; Ferguson BS
    Int J Mol Sci; 2018 Dec; 20(1):. PubMed ID: 30597863
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Association with class IIa histone deacetylases upregulates the sumoylation of MEF2 transcription factors.
    Grégoire S; Yang XJ
    Mol Cell Biol; 2005 Mar; 25(6):2273-87. PubMed ID: 15743823
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Approaches for Studying the Subcellular Localization, Interactions, and Regulation of Histone Deacetylase 5 (HDAC5).
    Guise AJ; Cristea IM
    Methods Mol Biol; 2016; 1436():47-84. PubMed ID: 27246208
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heart failure: the pivotal role of histone deacetylases.
    Hewitson R; Dargan J; Collis D; Green A; Moorjani N; Ohri S; Townsend PA
    Int J Biochem Cell Biol; 2013 Feb; 45(2):448-53. PubMed ID: 23178536
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CAMTA in cardiac hypertrophy.
    Schwartz RJ; Schneider MD
    Cell; 2006 May; 125(3):427-9. PubMed ID: 16678087
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.