These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 25362274)

  • 1. Exact stochastic unraveling of an optical coherence dynamics by cumulant expansion.
    Olšina J; Kramer T; Kreisbeck C; Mančal T
    J Chem Phys; 2014 Oct; 141(16):164109. PubMed ID: 25362274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculation of absorption spectra involving multiple excited states: approximate methods based on the mixed quantum classical Liouville equation.
    Bai S; Xie W; Zhu L; Shi Q
    J Chem Phys; 2014 Feb; 140(8):084105. PubMed ID: 24588146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A benchmark study of different methods for calculating one- and two-dimensional optical spectra.
    McRobbie PL; Geva E
    J Phys Chem A; 2009 Oct; 113(39):10425-34. PubMed ID: 19775171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. II. Hybrid cumulant expansion.
    Ma J; Moix J; Cao J
    J Chem Phys; 2015 Mar; 142(9):094107. PubMed ID: 25747061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Path integral Monte Carlo with importance sampling for excitons interacting with an arbitrary phonon bath.
    Shim S; Aspuru-Guzik A
    J Chem Phys; 2012 Dec; 137(22):22A538. PubMed ID: 23249075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. III. Exact stochastic path integral evaluation.
    Moix JM; Ma J; Cao J
    J Chem Phys; 2015 Mar; 142(9):094108. PubMed ID: 25747062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of environmental effects on coherent quantum dynamics in many-body systems.
    Riga JM; Martens CC
    J Chem Phys; 2004 Apr; 120(15):6863-73. PubMed ID: 15267585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum decoherence and quasi-equilibrium in open quantum systems with few degrees of freedom: application to 1H NMR of nematic liquid crystals.
    Segnorile HH; Zamar RC
    J Chem Phys; 2011 Dec; 135(24):244509. PubMed ID: 22225171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perturbation expansions of stochastic wavefunctions for open quantum systems.
    Ke Y; Zhao Y
    J Chem Phys; 2017 Nov; 147(18):184103. PubMed ID: 29141416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exact master equation and quantum decoherence of two coupled harmonic oscillators in a general environment.
    Chou CH; Yu T; Hu BL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011112. PubMed ID: 18351823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. I. Full cumulant expansions and system-bath entanglement.
    Ma J; Cao J
    J Chem Phys; 2015 Mar; 142(9):094106. PubMed ID: 25747060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trotter-based simulation of quantum-classical dynamics.
    Kernan DM; Ciccotti G; Kapral R
    J Phys Chem B; 2008 Jan; 112(2):424-32. PubMed ID: 18154283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mixed quantum-classical Liouville study of the population dynamics in a model photo-induced condensed phase electron transfer reaction.
    Rekik N; Hsieh CY; Freedman H; Hanna G
    J Chem Phys; 2013 Apr; 138(14):144106. PubMed ID: 24981527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stochastic simulation of anharmonic dissipation. I. Linear response regime.
    Yan YA
    J Chem Phys; 2016 Nov; 145(20):204111. PubMed ID: 27908138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A divide-conquer-recombine algorithmic paradigm for large spatiotemporal quantum molecular dynamics simulations.
    Shimojo F; Hattori S; Kalia RK; Kunaseth M; Mou W; Nakano A; Nomura K; Ohmura S; Rajak P; Shimamura K; Vashishta P
    J Chem Phys; 2014 May; 140(18):18A529. PubMed ID: 24832337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polaron formation: Ehrenfest dynamics vs. exact results.
    Li G; Movaghar B; Nitzan A; Ratner MA
    J Chem Phys; 2013 Jan; 138(4):044112. PubMed ID: 23387573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Path integral density matrix dynamics: a method for calculating time-dependent properties in thermal adiabatic and non-adiabatic systems.
    Habershon S
    J Chem Phys; 2013 Sep; 139(10):104107. PubMed ID: 24050328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical coherence and theoretical study of the excitation dynamics of a highly symmetric cyclophane-linked oligophenylenevinylene dimer.
    Moran AM; Maddox JB; Hong JW; Kim J; Nome RA; Bazan GC; Mukamel S; Scherer NF
    J Chem Phys; 2006 May; 124(19):194904. PubMed ID: 16729841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Equilibrium excited state and emission spectra of molecular aggregates from the hierarchical equations of motion approach.
    Jing Y; Chen L; Bai S; Shi Q
    J Chem Phys; 2013 Jan; 138(4):045101. PubMed ID: 23387623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semiclassical Liouville method for the simulation of electronic transitions: single ensemble formulation.
    Roman E; Martens CC
    J Chem Phys; 2004 Dec; 121(23):11572-80. PubMed ID: 15634122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.