These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 25362282)

  • 1. Extended Møller-Plesset perturbation theory for dynamical and static correlations.
    Tsuchimochi T; Van Voorhis T
    J Chem Phys; 2014 Oct; 141(16):164117. PubMed ID: 25362282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell pi-conjugated systems.
    Champagne B; Botek E; Nakano M; Nitta T; Yamaguchi K
    J Chem Phys; 2005 Mar; 122(11):114315. PubMed ID: 15839724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytic energy gradient in combined second-order Møller-Plesset perturbation theory and polarizable force field calculation.
    Li H
    J Phys Chem A; 2011 Oct; 115(42):11824-31. PubMed ID: 21905697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Second-order Møller-Plesset perturbation theory applied to extended systems. II. Structural and energetic properties.
    Grüneis A; Marsman M; Kresse G
    J Chem Phys; 2010 Aug; 133(7):074107. PubMed ID: 20726635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate calculation and modeling of the adiabatic connection in density functional theory.
    Teale AM; Coriani S; Helgaker T
    J Chem Phys; 2010 Apr; 132(16):164115. PubMed ID: 20441266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Second-order Møller-Plesset perturbation theory applied to extended systems. I. Within the projector-augmented-wave formalism using a plane wave basis set.
    Marsman M; Grüneis A; Paier J; Kresse G
    J Chem Phys; 2009 May; 130(18):184103. PubMed ID: 19449904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-consistent Kohn-Sham method based on the adiabatic-connection fluctuation-dissipation theorem and the exact-exchange kernel.
    Bleiziffer P; Krug M; Görling A
    J Chem Phys; 2015 Jun; 142(24):244108. PubMed ID: 26133411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamically adjustable spin component scaled second order Møller-Plesset perturbation theory for strongly correlated molecular systems.
    Maitra R
    J Chem Phys; 2018 Nov; 149(20):204107. PubMed ID: 30501233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved supermolecular second order Møller-Plesset intermolecular interaction energies using time-dependent density functional response theory.
    Hesselmann A
    J Chem Phys; 2008 Apr; 128(14):144112. PubMed ID: 18412428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlated one-body potential from second-order Møller-Plesset perturbation theory: alternative to orbital-optimized MP2 method.
    Lan TN; Yanai T
    J Chem Phys; 2013 Jun; 138(22):224108. PubMed ID: 23781784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalized Møller-Plesset Multiconfiguration Perturbation Theory Applied to an Open-Shell Antisymmetric Product of Strongly Orthogonal Geminals Reference Wave Function.
    Tarumi M; Kobayashi M; Nakai H
    J Chem Theory Comput; 2012 Nov; 8(11):4330-5. PubMed ID: 26605596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatically Embedded Many-Body Correlation Energy, with Applications to the Calculation of Accurate Second-Order Møller-Plesset Perturbation Theory Energies for Large Water Clusters.
    Dahlke EE; Truhlar DG
    J Chem Theory Comput; 2007 Jul; 3(4):1342-8. PubMed ID: 26633207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spin-component-scaled and dispersion-corrected second-order Møller-Plesset perturbation theory: a path toward chemical accuracy.
    Greenwell C; Řezáč J; Beran GJO
    Phys Chem Chem Phys; 2022 Feb; 24(6):3695-3712. PubMed ID: 35080535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab initio electronic structure study of a model water splitting dimer complex.
    Fernando A; Aikens CM
    Phys Chem Chem Phys; 2015 Dec; 17(48):32443-54. PubMed ID: 26593689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multireference perturbation method using non-orthogonal Hartree-Fock determinants for ground and excited states.
    Yost SR; Kowalczyk T; Van Voorhis T
    J Chem Phys; 2013 Nov; 139(17):174104. PubMed ID: 24206284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is spin-component scaled second-order Møller-Plesset perturbation theory an appropriate method for the study of noncovalent interactions in molecules?
    Antony J; Grimme S
    J Phys Chem A; 2007 Jun; 111(22):4862-8. PubMed ID: 17506533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Explicitly correlated second-order Møller-Plesset perturbation theory for unrestricted Hartree-Fock reference functions with exact satisfaction of cusp conditions.
    Bokhan D; Bernadotte S; Ten-No S
    J Chem Phys; 2009 Aug; 131(8):084105. PubMed ID: 19725606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Derivation of general analytic gradient expressions for density-fitted post-Hartree-Fock methods: an efficient implementation for the density-fitted second-order Møller-Plesset perturbation theory.
    Bozkaya U
    J Chem Phys; 2014 Sep; 141(12):124108. PubMed ID: 25273413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spin-component-scaled Møller-Plesset (SCS-MP) perturbation theory: a generalization of the MP approach with improved properties.
    Fink RF
    J Chem Phys; 2010 Nov; 133(17):174113. PubMed ID: 21054012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scaled opposite-spin second order Møller-Plesset correlation energy: an economical electronic structure method.
    Jung Y; Lochan RC; Dutoi AD; Head-Gordon M
    J Chem Phys; 2004 Nov; 121(20):9793-802. PubMed ID: 15549852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.