These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 25362282)

  • 21. Molecular gradient for second-order Møller-Plesset perturbation theory using the divide-expand-consolidate (DEC) scheme.
    Kristensen K; Jørgensen P; Jansík B; Kjærgaard T; Reine S
    J Chem Phys; 2012 Sep; 137(11):114102. PubMed ID: 22998244
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Developing effective electronic-only coupled-cluster and Møller-Plesset perturbation theories for the muonic molecules.
    Goli M; Shahbazian S
    Phys Chem Chem Phys; 2018 Jun; 20(24):16749-16760. PubMed ID: 29881845
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Second-Order Perturbation Theory with Spin-Symmetry-Projected Hartree-Fock.
    Tsuchimochi T; Ten-No SL
    J Chem Theory Comput; 2019 Dec; 15(12):6688-6702. PubMed ID: 31661264
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Size consistent formulations of the perturb-then-diagonalize Møller-Plesset perturbation theory correction to non-orthogonal configuration interaction.
    Yost SR; Head-Gordon M
    J Chem Phys; 2016 Aug; 145(5):054105. PubMed ID: 27497537
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Global Method for Electron Correlation.
    Piris M
    Phys Rev Lett; 2017 Aug; 119(6):063002. PubMed ID: 28949623
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Orbital-optimized third-order Møller-Plesset perturbation theory and its spin-component and spin-opposite scaled variants: application to symmetry breaking problems.
    Bozkaya U
    J Chem Phys; 2011 Dec; 135(22):224103. PubMed ID: 22168676
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparing ab initio density-functional and wave function theories: the impact of correlation on the electronic density and the role of the correlation potential.
    Grabowski I; Teale AM; Śmiga S; Bartlett RJ
    J Chem Phys; 2011 Sep; 135(11):114111. PubMed ID: 21950854
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Second-order state-specific multireference Møller Plesset perturbation theory: Application to energy surfaces of diimide, ethylene, butadiene, and cyclobutadiene.
    Mahapatra US; Chattopadhyay S; Chaudhuri RK
    J Comput Chem; 2011 Jan; 32(2):325-37. PubMed ID: 20683857
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analytic energy gradients for the orbital-optimized second-order Møller-Plesset perturbation theory.
    Bozkaya U; Sherrill CD
    J Chem Phys; 2013 May; 138(18):184103. PubMed ID: 23676025
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intermolecular potentials of the silane dimer calculated with Hartree-Fock theory, Møller-Plesset perturbation theory, and density functional theory.
    Pai CC; Li AH; Chao SD
    J Phys Chem A; 2007 Nov; 111(46):11922-9. PubMed ID: 17963367
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unrestricted prescriptions for open-shell singlet diradicals: using economical ab initio and density functional theory to calculate singlet-triplet gaps and bond dissociation curves.
    Ess DH; Cook TC
    J Phys Chem A; 2012 May; 116(20):4922-9. PubMed ID: 22578025
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analytic Excited State Gradients for the QM/MM Polarizable Embedded Second-Order Algebraic Diagrammatic Construction for the Polarization Propagator PE-ADC(2).
    Marefat Khah A; Karbalaei Khani S; Hättig C
    J Chem Theory Comput; 2018 Sep; 14(9):4640-4650. PubMed ID: 30040882
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spin-component-scaling second-order Møller-Plesset theory and its variants for economical correlation energies: unified theoretical interpretation and use for quartet N3.
    Varandas AJ
    J Chem Phys; 2010 Aug; 133(6):064104. PubMed ID: 20707558
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Van der Waals interactions between hydrocarbon molecules and zeolites: periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller-Plesset perturbation theory.
    Göltl F; Grüneis A; Bučko T; Hafner J
    J Chem Phys; 2012 Sep; 137(11):114111. PubMed ID: 22998253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relativistic and electron-correlation effects on magnetizabilities investigated by the Douglas-Kroll-Hess method and the second-order Møller-Plesset perturbation theory.
    Yoshizawa T; Hada M
    J Comput Chem; 2009 Nov; 30(15):2550-66. PubMed ID: 19373837
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Why does MP2 work?
    Fink RF
    J Chem Phys; 2016 Nov; 145(18):184101. PubMed ID: 27846691
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accurate Spin-State Energetics for Aryl Carbenes.
    Ghafarian Shirazi R; Neese F; Pantazis DA
    J Chem Theory Comput; 2018 Sep; 14(9):4733-4746. PubMed ID: 30110157
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Periodic local Møller-Plesset second order perturbation theory method applied to molecular crystals: study of solid NH3 and CO2 using extended basis sets.
    Maschio L; Usvyat D; Schütz M; Civalleri B
    J Chem Phys; 2010 Apr; 132(13):134706. PubMed ID: 20387953
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Communication: Random phase approximation renormalized many-body perturbation theory.
    Bates JE; Furche F
    J Chem Phys; 2013 Nov; 139(17):171103. PubMed ID: 24206280
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The origin of deficiency of the supermolecule second-order Moller-Plesset approach for evaluating interaction energies.
    Cybulski SM; Lytle ML
    J Chem Phys; 2007 Oct; 127(14):141102. PubMed ID: 17935376
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.