These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 25362330)

  • 1. Surface oxide growth on platinum electrode in aqueous trifluoromethanesulfonic acid.
    Furuya Y; Mashio T; Ohma A; Dale N; Oshihara K; Jerkiewicz G
    J Chem Phys; 2014 Oct; 141(16):164705. PubMed ID: 25362330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of the potential of minimum mass for platinum electrodes.
    Jerkiewicz G; Vatankhah G; Tanaka S; Lessard J
    Langmuir; 2011 Apr; 27(7):4220-6. PubMed ID: 21401076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and Analysis of Electrochemical Instrumentation Limitations through the Study of Platinum Surface Oxide Formation and Reduction.
    McMath AA; van Drunen J; Kim J; Jerkiewicz G
    Anal Chem; 2016 Mar; 88(6):3136-43. PubMed ID: 26877259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ and real-time monitoring of oxide growth in a few monolayers at surfaces of platinum nanoparticles in aqueous media.
    Imai H; Izumi K; Matsumoto M; Kubo Y; Kato K; Imai Y
    J Am Chem Soc; 2009 May; 131(17):6293-300. PubMed ID: 19358577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nafion structural phenomena at platinum and carbon interfaces.
    Wood DL; Chlistunoff J; Majewski J; Borup RL
    J Am Chem Soc; 2009 Dec; 131(50):18096-104. PubMed ID: 19924901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics and mechanism of electrochemical oxygen reduction using platinum/clay/Nafion catalyst layer for polymer electrolyte membrane fuel cells.
    Narayanamoorthy B; Datta KK; Balaji S
    J Colloid Interface Sci; 2012 Dec; 387(1):213-20. PubMed ID: 22959892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ anomalous small-angle X-ray scattering studies of platinum nanoparticle fuel cell electrocatalyst degradation.
    Gilbert JA; Kariuki NN; Subbaraman R; Kropf AJ; Smith MC; Holby EF; Morgan D; Myers DJ
    J Am Chem Soc; 2012 Sep; 134(36):14823-33. PubMed ID: 22857132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic studies of adsorbed CO electrochemical oxidation on Pt(335) at full and sub-saturation coverages.
    Inkaew P; Korzeniewski C
    Phys Chem Chem Phys; 2008 Jul; 10(25):3655-61. PubMed ID: 18563226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supramolecular aggregation of inorganic molecules at Au(111) electrodes under a strong ionic atmosphere.
    Fu YC; Su YZ; Wu DY; Yan JW; Xie ZX; Mao BW
    J Am Chem Soc; 2009 Oct; 131(41):14728-37. PubMed ID: 19778042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes.
    Cohen JL; Volpe DJ; Abruña HD
    Phys Chem Chem Phys; 2007 Jan; 9(1):49-77. PubMed ID: 17164887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors Influencing the Growth of Pt Nanowires via Chemical Self-Assembly and their Fuel Cell Performance.
    Meng H; Zhan Y; Zeng D; Zhang X; Zhang G; Jaouen F
    Small; 2015 Jul; 11(27):3377-86. PubMed ID: 25682734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New insights into the oxygen reduction reaction mechanism on Pt(111): a detailed electrochemical study.
    Gómez-Marín AM; Feliu JM
    ChemSusChem; 2013 Jun; 6(6):1091-100. PubMed ID: 23640868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative SNIFTIRS studies of (bi)sulfate adsorption at the Pt(111) electrode surface.
    Su Z; Climent V; Leitch J; Zamlynny V; Feliu JM; Lipkowski J
    Phys Chem Chem Phys; 2010 Dec; 12(46):15231-9. PubMed ID: 21046024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical quartz crystal microbalance analysis of the oxygen reduction reaction on Pt-based electrodes. Part 2: adsorption of oxygen species and ClO4(-) anions on Pt and Pt-Co alloy in HClO4 solutions.
    Omura J; Yano H; Tryk DA; Watanabe M; Uchida H
    Langmuir; 2014 Jan; 30(1):432-9. PubMed ID: 24384057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Oxidation of Platinum under Wet Conditions Observed by Electrochemical X-ray Photoelectron Spectroscopy.
    Mom R; Frevel L; Velasco-Vélez JJ; Plodinec M; Knop-Gericke A; Schlögl R
    J Am Chem Soc; 2019 Apr; 141(16):6537-6544. PubMed ID: 30929429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature dependence of oxygen reduction activity at Nafion-coated bulk Pt and Pt/carbon black catalysts.
    Yano H; Higuchi E; Uchida H; Watanabe M
    J Phys Chem B; 2006 Aug; 110(33):16544-9. PubMed ID: 16913788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cation-π induced aggregation of water-soluble [Pt(II)(diimine)(L(n)-S,O)]+ complexes studied by 1H DOSY NMR and TEM: from 'dimer aggregates' in acetonitrile to nano-aggregates ('metallogels') in water.
    Kotzé IA; Gerber WJ; Wu YS; Koch KR
    Dalton Trans; 2013 Mar; 42(11):3791-801. PubMed ID: 23212303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of metal cations on the electrocatalytic properties of Pt/C nanoparticles at multiple phase interfaces.
    Durst J; Chatenet M; Maillard F
    Phys Chem Chem Phys; 2012 Oct; 14(37):13000-9. PubMed ID: 22903748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of reduction of aqueous hexaammineruthenium(III) ion at Pt and Au microelectrodes: electrolyte, temperature, and pressure effects.
    Vijaikanth V; Li G; Swaddle TW
    Inorg Chem; 2013 Mar; 52(5):2757-68. PubMed ID: 23421865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.