These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 25362372)

  • 1. Grazing incidence angle based sensing approach integrated with fiber-optic Fourier transform infrared (FO-FTIR) spectroscopy for remote and label-free detection of medical device contaminations.
    Hassan M; Ilev I
    Rev Sci Instrum; 2014 Oct; 85(10):103108. PubMed ID: 25362372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fiber-optic Fourier transform infrared spectroscopy for remote label-free sensing of medical device surface contamination.
    Hassan M; Tan X; Welle E; Ilev I
    Rev Sci Instrum; 2013 May; 84(5):053101. PubMed ID: 23742526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nontoxic and chemically stable hollow optical fiber probe for fourier transform infrared spectroscopy.
    Kino S; Matsuura Y
    Appl Spectrosc; 2007 Dec; 61(12):1334-7. PubMed ID: 18198025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fiber-optic infrared reflection absorption spectroscopy for trace analysis on surfaces of varying roughness. Part II: Acetaminophen on stainless steel.
    Perston BB; Hamilton ML; Harland PW; Thomson MA; Melling PJ; Williamson BE
    Appl Spectrosc; 2008 Mar; 62(3):312-8. PubMed ID: 18339240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grazing-angle fiber-optic fourier transform infrared reflection-absorption spectroscopy for the in situ detection and quantification of two active pharmaceutical ingredients on glass.
    Perston BB; Hamilton ML; Williamson BE; Harland PW; Thomson MA; Melling PJ
    Anal Chem; 2007 Feb; 79(3):1231-6. PubMed ID: 17263358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hollow-fiber-based flexible probe for remote measurement of infrared attenuated total reflection.
    Matsuura Y; Kino S; Katagiri T
    Appl Opt; 2009 Oct; 48(28):5396-400. PubMed ID: 19798380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-cell-based sensors and synchrotron FTIR spectroscopy: a hybrid system towards bacterial detection.
    Veiseh M; Veiseh O; Martin MC; Bertozzi C; Zhang M
    Biosens Bioelectron; 2007 Sep; 23(2):253-60. PubMed ID: 17560777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broadband infrared beam splitter for spaceborne interferometric infrared sounder.
    Yu T; Liu D; Qin Y
    Appl Opt; 2014 Oct; 53(28):6513-7. PubMed ID: 25322240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hollow-core photonic crystal fiber probe for remote fluorescence sensing with single molecule sensitivity.
    Ghenuche P; Rigneault H; Wenger J
    Opt Express; 2012 Dec; 20(27):28379-87. PubMed ID: 23263073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remote Fourier transform-infrared spectral imaging system with hollow-optical fiber bundle.
    Huang C; Kino S; Katagiri T; Matsuura Y
    Appl Opt; 2012 Oct; 51(29):6913-6. PubMed ID: 23052066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fourier transform infrared spectroscopy in cancer detection.
    Sahu R; Mordechai S
    Future Oncol; 2005 Oct; 1(5):635-47. PubMed ID: 16556041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fiber-optic probes enable cancer detection with FTIR spectroscopy.
    Mackanos MA; Contag CH
    Trends Biotechnol; 2010 Jun; 28(6):317-23. PubMed ID: 20452071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infrared hollow optical fiber probes for reflectance spectral imaging.
    Huang C; Kino S; Katagiri T; Matsuura Y
    Appl Opt; 2015 May; 54(14):4602-7. PubMed ID: 25967522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infrared spectroscopy studies of cation effects on lipopolysaccharides in aqueous solution.
    Parikh SJ; Chorover J
    Colloids Surf B Biointerfaces; 2007 Apr; 55(2):241-50. PubMed ID: 17275267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Calibration of EQUINOX55 remote sensing FTIR emission system].
    Huang ZH; Li Y; Wang JD; Chen ZR
    Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Jun; 22(3):399-400. PubMed ID: 12938314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo and in situ detection of colorectal cancer using Fourier transform infrared spectroscopy.
    Li QB; Xu Z; Zhang NW; Zhang L; Wang F; Yang LM; Wang JS; Zhou S; Zhang YF; Zhou XS; Shi JS; Wu JG
    World J Gastroenterol; 2005 Jan; 11(3):327-30. PubMed ID: 15637737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A responsivity-based criterion for accurate calibration of FTIR emission spectra: identification of in-band low-responsivity wavenumbers.
    Rowe PM; Neshyba SP; Cox CJ; Walden VP
    Opt Express; 2011 Mar; 19(7):5930-41. PubMed ID: 21451618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lung cell fiber evanescent wave spectroscopic biosensing of inhalation health hazards.
    Riley MR; Lucas P; Le Coq D; Juncker C; Boesewetter DE; Collier JL; DeRosa DM; Katterman ME; Boussard-Plédel C; Bureau B
    Biotechnol Bioeng; 2006 Nov; 95(4):599-612. PubMed ID: 16900468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinguishing malignant from normal oral tissues using FTIR fiber-optic techniques.
    Wu JG; Xu YZ; Sun CW; Soloway RD; Xu DF; Wu QG; Sun KH; Weng SF; Xu GX
    Biopolymers; 2001; 62(4):185-92. PubMed ID: 11391568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring of hydrogen sulfide via substrate-integrated hollow waveguide mid-infrared sensors in real-time.
    Petruci JF; Fortes PR; Kokoric V; Wilk A; Raimundo IM; Cardoso AA; Mizaikoff B
    Analyst; 2014 Jan; 139(1):198-203. PubMed ID: 24256718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.