These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 25362440)

  • 1. Pump-probe measurements of the thermal conductivity tensor for materials lacking in-plane symmetry.
    Feser JP; Liu J; Cahill DG
    Rev Sci Instrum; 2014 Oct; 85(10):104903. PubMed ID: 25362440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new elliptical-beam method based on time-domain thermoreflectance (TDTR) to measure the in-plane anisotropic thermal conductivity and its comparison with the beam-offset method.
    Jiang P; Qian X; Yang R
    Rev Sci Instrum; 2018 Sep; 89(9):094902. PubMed ID: 30278764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anisotropic thermal conductivity measurement using a new Asymmetric-Beam Time-Domain Thermoreflectance (AB-TDTR) method.
    Li M; Kang JS; Hu Y
    Rev Sci Instrum; 2018 Aug; 89(8):084901. PubMed ID: 30184688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate measurements of cross-plane thermal conductivity of thin films by dual-frequency time-domain thermoreflectance (TDTR).
    Jiang P; Huang B; Koh YK
    Rev Sci Instrum; 2016 Jul; 87(7):075101. PubMed ID: 27475589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing anisotropic heat transport using time-domain thermoreflectance with offset laser spots.
    Feser JP; Cahill DG
    Rev Sci Instrum; 2012 Oct; 83(10):104901. PubMed ID: 23126792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding and eliminating artifact signals from diffusely scattered pump beam in measurements of rough samples by time-domain thermoreflectance (TDTR).
    Sun B; Koh YK
    Rev Sci Instrum; 2016 Jun; 87(6):064901. PubMed ID: 27370481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate measurement of in-plane thermal conductivity of layered materials without metal film transducer using frequency domain thermoreflectance.
    Qian X; Ding Z; Shin J; Schmidt AJ; Chen G
    Rev Sci Instrum; 2020 Jun; 91(6):064903. PubMed ID: 32611038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-domain thermoreflectance (TDTR) measurements of anisotropic thermal conductivity using a variable spot size approach.
    Jiang P; Qian X; Yang R
    Rev Sci Instrum; 2017 Jul; 88(7):074901. PubMed ID: 28764522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 3 omega method to measure an arbitrary anisotropic thermal conductivity tensor.
    Mishra V; Hardin CL; Garay JE; Dames C
    Rev Sci Instrum; 2015 May; 86(5):054902. PubMed ID: 26026546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal conductivity measurements of non-metals via combined time- and frequency-domain thermoreflectance without a metal film transducer.
    Wang L; Cheaito R; Braun JL; Giri A; Hopkins PE
    Rev Sci Instrum; 2016 Sep; 87(9):094902. PubMed ID: 27782592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous measurement of in-plane and through-plane thermal conductivity using beam-offset frequency domain thermoreflectance.
    Rodin D; Yee SK
    Rev Sci Instrum; 2017 Jan; 88(1):014902. PubMed ID: 28147667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High sensitivity pump-probe measurements of magnetic, thermal, and acoustic phenomena with a spectrally tunable oscillator.
    Gomez MJ; Liu K; Lee JG; Wilson RB
    Rev Sci Instrum; 2020 Feb; 91(2):023905. PubMed ID: 32113424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous measurement of thermal conductivity and heat capacity of bulk and thin film materials using frequency-dependent transient thermoreflectance method.
    Liu J; Zhu J; Tian M; Gu X; Schmidt A; Yang R
    Rev Sci Instrum; 2013 Mar; 84(3):034902. PubMed ID: 23556838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput heterodyne thermoreflectance: Application to thermal conductivity measurements of a Fe-Si-Ge thin film alloy library.
    d'Acremont Q; Pernot G; Rampnoux JM; Furlan A; Lacroix D; Ludwig A; Dilhaire S
    Rev Sci Instrum; 2017 Jul; 88(7):074902. PubMed ID: 28764526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Examining thermal transport through a frequency-domain representation of time-domain thermoreflectance data.
    Collins KC; Maznev AA; Cuffe J; Nelson KA; Chen G
    Rev Sci Instrum; 2014 Dec; 85(12):124903. PubMed ID: 25554315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A frequency-domain thermoreflectance method for the characterization of thermal properties.
    Schmidt AJ; Cheaito R; Chiesa M
    Rev Sci Instrum; 2009 Sep; 80(9):094901. PubMed ID: 19791955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermoreflectance of metal transducers for optical pump-probe studies of thermal properties.
    Wilson RB; Apgar BA; Martin LW; Cahill DG
    Opt Express; 2012 Dec; 20(27):28829-38. PubMed ID: 23263123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal property microscopy with frequency domain thermoreflectance.
    Yang J; Maragliano C; Schmidt AJ
    Rev Sci Instrum; 2013 Oct; 84(10):104904. PubMed ID: 24182148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wide bandwidth frequency-domain thermoreflectance: Volumetric heat capacity, anisotropic thermal conductivity, and thickness measurements.
    Ziade E
    Rev Sci Instrum; 2020 Dec; 91(12):124901. PubMed ID: 33379952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reducing the uncertainty caused by the laser spot radius in frequency-domain thermoreflectance measurements of thermal properties.
    Wang X; Jeong M; McGaughey AJH; Malen JA
    Rev Sci Instrum; 2022 Feb; 93(2):023001. PubMed ID: 35232151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.