These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 25362446)

  • 1. Determination of the position and orientation of a flat piezoelectric micro-stage by moving the optical axis.
    Zhuang GY; Lee HW; Liu CH
    Rev Sci Instrum; 2014 Oct; 85(10):105004. PubMed ID: 25362446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low cost, compact 4-DOF measurement system with active compensation of beam angular drift error.
    Huang Y; Fan KC; Sun W; Liu S
    Opt Express; 2018 Jun; 26(13):17185-17198. PubMed ID: 30119533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and experiment of multidimensional and subnanometer stage driven by spatially distributed piezoelectric ceramics.
    Zhang F; Huang Q; Zhang C; Cheng B; Cheng R; Zhang L; Li H
    Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38739424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a Measurement System for Six-Degree-of-Freedom Geometric Errors of a Linear Guide of a Machine Tool.
    Liu CS; Lai JJ; Luo YT
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30577462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Modeling and Attitude Decoupling Control for a 3-DOF Flexible Piezoelectric Nano-Positioning Stage Based on ADRC.
    Chen N; Liu X
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Five-degrees-of-freedom diffractive laser encoder.
    Liu CH; Huang HL; Lee HW
    Appl Opt; 2009 May; 48(14):2767-77. PubMed ID: 19424401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a 6-DoF motion system for realizing a linear datum for geometric measurements.
    Wang S; Cui J; Tan J; Liu Y
    Rev Sci Instrum; 2016 Aug; 87(8):085115. PubMed ID: 27587168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a three-degree-of-freedom laser linear encoder for error measurement of a high precision stage.
    Huang HL; Liu CH; Jywe WY; Wang MS; Fang TH
    Rev Sci Instrum; 2007 Jun; 78(6):066103. PubMed ID: 17614647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Method for simultaneous measurement of five DOF motion errors of a rotary axis using a single-mode fiber-coupled laser.
    Li J; Feng Q; Bao C; Zhao Y
    Opt Express; 2018 Feb; 26(3):2535-2545. PubMed ID: 29401792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Note: Development of a high resolution six-degrees-of-freedom optical vibrometer for precision stage.
    Hsieh TH; Jywe WY; Chen SL; Liu CH; Huang HL
    Rev Sci Instrum; 2011 May; 82(5):056101. PubMed ID: 21639549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal design and experiment of a three-axis out-of-plane nano positioning stage using a new compact bridge-type displacement amplifier.
    Lee HJ; Kim HC; Kim HY; Gweon DG
    Rev Sci Instrum; 2013 Nov; 84(11):115103. PubMed ID: 24289433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of six degrees of freedom head kinematics in impact conditions employing six accelerometers and three angular rate sensors (6aω configuration).
    Kang YS; Moorhouse K; Bolte JH
    J Biomech Eng; 2011 Nov; 133(11):111007. PubMed ID: 22168739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a Novel 2-DOF Rotary-Linear Piezoelectric Actuator Operating under Hybrid Bending-Radial Vibration Mode.
    Čeponis A; Mažeika D; Makutėnienė D
    Micromachines (Basel); 2021 Jun; 12(6):. PubMed ID: 34205591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, implementation, and control of a six-axis compliant stage.
    Hu K; Kim JH; Schmiedeler J; Menq CH
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):025105. PubMed ID: 18315327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an optical three-dimensional laser tracker using dual modulated laser diodes and a signal detector.
    Lee HW; Chen CL; Liu CH
    Rev Sci Instrum; 2011 Mar; 82(3):035101. PubMed ID: 21456783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Dynamic Micro Vibrator with Integrated Optical Displacement Detector for In-Situ Self-Calibration of MEMS Inertial Sensors.
    Du YJ; Yang TT; Gong DD; Wang YC; Sun XY; Qin F; Dai G
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29954126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of the nonlinear dynamic response of a Z-tilts lead zirconate titanate-based compensation stage using the capacitor insertion method.
    Liu CH; Chen CL; Lee HW; Jywe WY
    Rev Sci Instrum; 2009 Nov; 80(11):115112. PubMed ID: 19947762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-degree-of-freedom displacement measurement using grating-based heterodyne interferometry.
    Hsieh HL; Pan SW
    Appl Opt; 2013 Sep; 52(27):6840-8. PubMed ID: 24085186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Method for Detecting the Two-Degrees-of-Freedom Angular Displacement of a Spherical Pair, Based on a Capacitive Sensor.
    Yang S; Xu Y; Xu Y; Ma T; Wang H; Hou J; Liu D; Shen H
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A three-step displacement measurement method for a 3-DOF macro-micro positioning stage.
    Zhang X; Zhang X; Li K; Li H; Li C; Shan Y
    Rev Sci Instrum; 2018 Nov; 89(11):113701. PubMed ID: 30501309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.