These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 25362488)

  • 61. Structure-based mutagenesis studies of the peptide substrate binding fragment of type I heat-shock protein 40.
    Li J; Sha B
    Biochem J; 2005 Mar; 386(Pt 3):453-60. PubMed ID: 15500443
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Release factor eRF3 mediates premature translation termination on polylysine-stalled ribosomes in Saccharomyces cerevisiae.
    Chiabudini M; Tais A; Zhang Y; Hayashi S; Wölfle T; Fitzke E; Rospert S
    Mol Cell Biol; 2014 Nov; 34(21):4062-76. PubMed ID: 25154418
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Programmed Trade-offs in Protein Folding Networks.
    Pechmann S
    Structure; 2020 Dec; 28(12):1361-1375.e4. PubMed ID: 33053320
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Direct interactions between molecular chaperones heat-shock protein (Hsp) 70 and Hsp40: yeast Hsp70 Ssa1 binds the extreme C-terminal region of yeast Hsp40 Sis1.
    Qian X; Hou W; Zhengang L; Sha B
    Biochem J; 2002 Jan; 361(Pt 1):27-34. PubMed ID: 11743879
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Zuotin, a ribosome-associated DnaJ molecular chaperone.
    Yan W; Schilke B; Pfund C; Walter W; Kim S; Craig EA
    EMBO J; 1998 Aug; 17(16):4809-17. PubMed ID: 9707440
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The architecture of functional modules in the Hsp90 co-chaperone Sti1/Hop.
    Schmid AB; Lagleder S; Gräwert MA; Röhl A; Hagn F; Wandinger SK; Cox MB; Demmer O; Richter K; Groll M; Kessler H; Buchner J
    EMBO J; 2012 Mar; 31(6):1506-17. PubMed ID: 22227520
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Chaperone Interactions at the Ribosome.
    Deuerling E; Gamerdinger M; Kreft SG
    Cold Spring Harb Perspect Biol; 2019 Nov; 11(11):. PubMed ID: 30833456
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effective cotranslational folding of firefly luciferase without chaperones of the Hsp70 family.
    Svetlov MS; Kommer A; Kolb VA; Spirin AS
    Protein Sci; 2006 Feb; 15(2):242-7. PubMed ID: 16385000
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Co-evolution-driven switch of J-protein specificity towards an Hsp70 partner.
    Pukszta S; Schilke B; Dutkiewicz R; Kominek J; Moczulska K; Stepien B; Reitenga KG; Bujnicki JM; Williams B; Craig EA; Marszalek J
    EMBO Rep; 2010 May; 11(5):360-5. PubMed ID: 20224575
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Cotranslational signal-independent SRP preloading during membrane targeting.
    Chartron JW; Hunt KC; Frydman J
    Nature; 2016 Aug; 536(7615):224-8. PubMed ID: 27487213
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Regulation by a chaperone improves substrate selectivity during cotranslational protein targeting.
    Ariosa A; Lee JH; Wang S; Saraogi I; Shan SO
    Proc Natl Acad Sci U S A; 2015 Jun; 112(25):E3169-78. PubMed ID: 26056263
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Role of the Cell Asymmetry Apparatus and Ribosome-Associated Chaperones in the Destabilization of a
    Howie RL; Jay-Garcia LM; Kiktev DA; Faber QL; Murphy M; Rees KA; Sachwani N; Chernoff YO
    Genetics; 2019 Jul; 212(3):757-771. PubMed ID: 31142614
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Chaperone functional specificity promotes yeast prion diversity.
    Killian AN; Hines JK
    PLoS Pathog; 2018 Jan; 14(1):e1006695. PubMed ID: 29300791
    [No Abstract]   [Full Text] [Related]  

  • 74. RAC, a stable ribosome-associated complex in yeast formed by the DnaK-DnaJ homologs Ssz1p and zuotin.
    Gautschi M; Lilie H; Fünfschilling U; Mun A; Ross S; Lithgow T; Rücknagel P; Rospert S
    Proc Natl Acad Sci U S A; 2001 Mar; 98(7):3762-7. PubMed ID: 11274393
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Receptor for activated C kinase 1 stimulates nascent polypeptide-dependent translation arrest.
    Kuroha K; Akamatsu M; Dimitrova L; Ito T; Kato Y; Shirahige K; Inada T
    EMBO Rep; 2010 Dec; 11(12):956-61. PubMed ID: 21072063
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Hierarchical functional specificity of cytosolic heat shock protein 70 (Hsp70) nucleotide exchange factors in yeast.
    Abrams JL; Verghese J; Gibney PA; Morano KA
    J Biol Chem; 2014 May; 289(19):13155-67. PubMed ID: 24671421
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A novel mode of chaperone action: heme activation of Hap1 by enhanced association of Hsp90 with the repressed Hsp70-Hap1 complex.
    Lan C; Lee HC; Tang S; Zhang L
    J Biol Chem; 2004 Jun; 279(26):27607-12. PubMed ID: 15102838
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Alleviation of deleterious effects of protein mutation through inactivation of molecular chaperones.
    Tomala K; Korona R
    Mol Genet Genomics; 2008 Nov; 280(5):409-17. PubMed ID: 18762987
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Cotranslational Mechanisms of Protein Biogenesis and Complex Assembly in Eukaryotes.
    Morales-Polanco F; Lee JH; Barbosa NM; Frydman J
    Annu Rev Biomed Data Sci; 2022 Aug; 5():67-94. PubMed ID: 35472290
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Resonance assignments for the substrate binding domain of Hsp70 chaperone Ssa1 from Saccharomyces cerevisiae.
    Hu W; Wu H; Zhang H; Gong W; Perrett S
    Biomol NMR Assign; 2015 Oct; 9(2):329-32. PubMed ID: 25682100
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.