These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 2536251)

  • 1. Breathing and upper airway CO2 in reptiles: role of the nasal and vomeronasal systems.
    Coates EL; Ballam GO
    Am J Physiol; 1989 Jan; 256(1 Pt 2):R91-7. PubMed ID: 2536251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upper airway CO2 receptors in tegu lizards: localization and ventilatory sensitivity.
    Coates EL; Ballam GO
    J Comp Physiol B; 1987; 157(4):483-9. PubMed ID: 2822784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A decrease in nasal CO2 stimulates breathing in the tegu lizard.
    Coates EL; Furilla RA; Ballam GO; Bartlett D
    Respir Physiol; 1991 Oct; 86(1):65-75. PubMed ID: 1759054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and characterization of a chemoattractant from electric shock-induced earthworm secretion, its receptor binding, and signal transduction through the vomeronasal system of garter snakes.
    Jiang XC; Inouchi J; Wang D; Halpern M
    J Biol Chem; 1990 May; 265(15):8736-44. PubMed ID: 2160465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rate of rise of intrapulmonary CO2 drives breathing frequency in garter snakes.
    Furilla RA
    J Appl Physiol (1985); 1991 Dec; 71(6):2304-8. PubMed ID: 1778927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrapulmonary CO2 inhibits inspiration in garter snakes.
    Furilla RA; Bartlett D
    Respir Physiol; 1989 Nov; 78(2):207-17. PubMed ID: 2514454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breathing response of the tegu lizard to 1-4% CO2 in the mouth and nose or inspired into the lungs.
    Ballam GO
    Respir Physiol; 1985 Dec; 62(3):375-86. PubMed ID: 3937193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effects of lesions of the vomeronasal and olfactory nerves on garter snake (Thamnophis sirtalis) responses to airborne chemical stimuli.
    Zuri I; Halpern M
    Behav Neurosci; 2003 Feb; 117(1):169-83. PubMed ID: 12619919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laboratory observations of aggregative behavior of garter snakes, Thamnophis sirtalis: roles of the visual, olfactory, and vomeronasal senses.
    Heller SB; Halpern M
    J Comp Physiol Psychol; 1982 Dec; 96(6):984-99. PubMed ID: 7153392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of the vomeronasal and olfactory systems in prey attack and feeding in adult garter snakes.
    Halpern M; Frumin N
    Physiol Behav; 1979 Jun; 22(6):1183-9. PubMed ID: 573911
    [No Abstract]   [Full Text] [Related]  

  • 11. Effect of upper airway CO2 pattern on ventilatory frequency in tegu lizards.
    Ballam GO; Coates EL
    Am J Physiol; 1989 Jul; 257(1 Pt 2):R156-61. PubMed ID: 2546453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of upper airway CO2 on breathing in awake ponies.
    Forster HV; Pan LG; Flynn C; Bisgard GE; Hoffer RE
    J Appl Physiol (1985); 1985 Oct; 59(4):1222-7. PubMed ID: 3932321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ventilatory response to inspired CO2 in the lizard, Tupinambis nigropunctatus.
    Ballam GO
    Comp Biochem Physiol A Comp Physiol; 1984; 78(4):757-62. PubMed ID: 6149049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of bilateral vagotomy on the ventilatory responses of the water snake Nerodia sipedon.
    Gratz RK
    Am J Physiol; 1984 Feb; 246(2 Pt 2):R221-7. PubMed ID: 6421179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localization of CO2 sensor related to the inhibition of the bullfrog respiration.
    Sakakibara Y
    Jpn J Physiol; 1978; 28(6):721-35. PubMed ID: 312964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Embryonic and neonatal development of the vomeronasal and olfactory systems in garter snakes (Thamnophis spp.).
    Holtzman DA; Halpern M
    J Morphol; 1990 Feb; 203(2):123-40. PubMed ID: 2304083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of ventilation in the caiman (Caiman latirostris): effects of inspired CO2 on pulmonary and upper airway chemoreceptors.
    Tattersall GJ; de Andrade DV; Brito SP; Abe AS; Milsom WK
    J Comp Physiol B; 2006 Feb; 176(2):125-38. PubMed ID: 16283333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Odorized air current trailing by garter snakes, Thamnophis sirtalis.
    Waters RM
    Brain Behav Evol; 1993; 41(3-5):219-23. PubMed ID: 8477343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reducing ventilatory response to carbon dioxide by breathing cold air.
    Burgess KR; Whitelaw WA
    Am Rev Respir Dis; 1984 May; 129(5):687-90. PubMed ID: 6426352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in lung volume and upper airway using MRI during application of nasal expiratory positive airway pressure in patients with sleep-disordered breathing.
    Braga CW; Chen Q; Burschtin OE; Rapoport DM; Ayappa I
    J Appl Physiol (1985); 2011 Nov; 111(5):1400-9. PubMed ID: 21799124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.