BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 25362531)

  • 21. Phase II metabolism of the soy isoflavones genistein and daidzein in humans, rats and mice: a cross-species and sex comparison.
    Soukup ST; Helppi J; Müller DR; Zierau O; Watzl B; Vollmer G; Diel P; Bub A; Kulling SE
    Arch Toxicol; 2016 Jun; 90(6):1335-47. PubMed ID: 26838042
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Apoptotic effects of cooked and in vitro digested soy on human prostate cancer cells.
    Dong X; Xu W; Sikes RA; Wu C
    Food Chem; 2012 Dec; 135(3):1643-52. PubMed ID: 22953905
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genistein and daidzein: different molecular effects on prostate cancer.
    Adjakly M; Ngollo M; Boiteux JP; Bignon YJ; Guy L; Bernard-Gallon D
    Anticancer Res; 2013 Jan; 33(1):39-44. PubMed ID: 23267126
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Soy isoflavones increase quinone reductase in hepa-1c1c7 cells via estrogen receptor beta and nuclear factor erythroid 2-related factor 2 binding to the antioxidant response element.
    Froyen EB; Steinberg FM
    J Nutr Biochem; 2011 Sep; 22(9):843-8. PubMed ID: 21167702
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exposure of infants to phyto-oestrogens from soy-based infant formula.
    Setchell KD; Zimmer-Nechemias L; Cai J; Heubi JE
    Lancet; 1997 Jul; 350(9070):23-7. PubMed ID: 9217716
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Soy isoflavones suppress invasiveness of breast cancer cells by the inhibition of NF-kappaB/AP-1-dependent and -independent pathways.
    Valachovicova T; Slivova V; Bergman H; Shuherk J; Sliva D
    Int J Oncol; 2004 Nov; 25(5):1389-95. PubMed ID: 15492830
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Soy-derived isoflavones exert opposing actions on Guinea pig ventricular myocytes.
    Liew R; Williams JK; Collins P; MacLeod KT
    J Pharmacol Exp Ther; 2003 Mar; 304(3):985-93. PubMed ID: 12604673
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sulfation of the isoflavones genistein and daidzein in human and rat liver and gastrointestinal tract.
    Ronis MJ; Little JM; Barone GW; Chen G; Radominska-Pandya A; Badger TM
    J Med Food; 2006; 9(3):348-55. PubMed ID: 17004897
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiple mechanisms of soy isoflavones against oxidative stress-induced endothelium injury.
    Xu SZ; Zhong W; Ghavideldarestani M; Saurabh R; Lindow SW; Atkin SL
    Free Radic Biol Med; 2009 Jul; 47(2):167-75. PubMed ID: 19393315
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isoflavones inhibit proliferation of ovarian cancer cells in vitro via an estrogen receptor-dependent pathway.
    Chen X; Anderson JJ
    Nutr Cancer; 2001; 41(1-2):165-71. PubMed ID: 12094620
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of soy isoflavone conjugation in vitro and in human blood using liquid chromatography-mass spectrometry.
    Doerge DR; Chang HC; Churchwell MI; Holder CL
    Drug Metab Dispos; 2000 Mar; 28(3):298-307. PubMed ID: 10681374
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glucuronidation of the soyabean isoflavones genistein and daidzein by human liver is related to levels of UGT1A1 and UGT1A9 activity and alters isoflavone response in the MCF-7 human breast cancer cell line.
    Pritchett LE; Atherton KM; Mutch E; Ford D
    J Nutr Biochem; 2008 Nov; 19(11):739-45. PubMed ID: 18430559
    [TBL] [Abstract][Full Text] [Related]  

  • 33. LC/UV/ESI-MS analysis of isoflavones in Edamame and Tofu soybeans.
    Wu Q; Wang M; Sciarappa WJ; Simon JE
    J Agric Food Chem; 2004 May; 52(10):2763-9. PubMed ID: 15137811
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antioxidant activity of isoflavones and their major metabolites using different in vitro assays.
    Rüfer CE; Kulling SE
    J Agric Food Chem; 2006 Apr; 54(8):2926-31. PubMed ID: 16608210
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular signatures of soy-derived phytochemicals in androgen-responsive prostate cancer cells: a comparison study using DNA microarray.
    Takahashi Y; Lavigne JA; Hursting SD; Chandramouli GV; Perkins SN; Kim YS; Wang TT
    Mol Carcinog; 2006 Dec; 45(12):943-56. PubMed ID: 16865672
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New insights into the pharmacological potential of plant flavonoids in the catecholamine system.
    Yanagihara N; Zhang H; Toyohira Y; Takahashi K; Ueno S; Tsutsui M; Takahashi K
    J Pharmacol Sci; 2014; 124(2):123-8. PubMed ID: 24492414
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lycopene and soy isoflavones in the treatment of prostate cancer.
    Vaishampayan U; Hussain M; Banerjee M; Seren S; Sarkar FH; Fontana J; Forman JD; Cher ML; Powell I; Pontes JE; Kucuk O
    Nutr Cancer; 2007; 59(1):1-7. PubMed ID: 17927495
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Soy isoflavones in the treatment of prostate cancer.
    Hussain M; Banerjee M; Sarkar FH; Djuric Z; Pollak MN; Doerge D; Fontana J; Chinni S; Davis J; Forman J; Wood DP; Kucuk O
    Nutr Cancer; 2003; 47(2):111-7. PubMed ID: 15087261
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Soy intake and cancer risk: a review of the in vitro and in vivo data.
    Messina MJ; Persky V; Setchell KD; Barnes S
    Nutr Cancer; 1994; 21(2):113-31. PubMed ID: 8058523
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pharmacokinetic Comparison of Soy Isoflavone Extracts in Human Plasma.
    Rodríguez-Morató J; Farré M; Pérez-Mañá C; Papaseit E; Martínez-Riera R; de la Torre R; Pizarro N
    J Agric Food Chem; 2015 Aug; 63(31):6946-53. PubMed ID: 26186408
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.