These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 25363068)
1. Acute and long-term ocular effects of acrolein vapor on the eyes and potential therapies. Dachir S; Cohen M; Gutman H; Cohen L; Buch H; Kadar T Cutan Ocul Toxicol; 2015; 34(4):286-93. PubMed ID: 25363068 [TBL] [Abstract][Full Text] [Related]
2. Ocular injuries following sulfur mustard exposure--pathological mechanism and potential therapy. Kadar T; Dachir S; Cohen L; Sahar R; Fishbine E; Cohen M; Turetz J; Gutman H; Buch H; Brandeis R; Horwitz V; Solomon A; Amir A Toxicology; 2009 Sep; 263(1):59-69. PubMed ID: 19061933 [TBL] [Abstract][Full Text] [Related]
3. Acute and long-term ocular effects of acrolein vapor on the eyes and potential therapies. Ilhan A; Yolcu U; Uzun S Cutan Ocul Toxicol; 2016 Mar; 35(1):87. PubMed ID: 25694172 [TBL] [Abstract][Full Text] [Related]
4. Beneficial effects of topical anti-inflammatory drugs against sulfur mustard-induced ocular lesions in rabbits. Amir A; Turetz J; Chapman S; Fishbeine E; Meshulam J; Sahar R; Liani H; Gilat E; Frishman G; Kadar T J Appl Toxicol; 2000 Dec; 20 Suppl 1():S109-14. PubMed ID: 11428620 [TBL] [Abstract][Full Text] [Related]
5. Endothelial cell damage following sulfur mustard exposure in rabbits and its association with the delayed-onset ocular lesions. Kadar T; Cohen M; Cohen L; Fishbine E; Sahar R; Brandeis R; Dachir S; Amir A Cutan Ocul Toxicol; 2013 Jun; 32(2):115-23. PubMed ID: 23106194 [TBL] [Abstract][Full Text] [Related]
6. A rabbit model for evaluating ocular damage from acrolein toxicity in vivo. Gupta S; Fink MK; Martin LM; Sinha PR; Rodier JT; Sinha NR; Hesemann NP; Chaurasia SS; Mohan RR Ann N Y Acad Sci; 2020 Nov; 1480(1):233-245. PubMed ID: 33067838 [TBL] [Abstract][Full Text] [Related]
8. Preservation of tear film integrity and inhibition of corneal injury by dexamethasone in a rabbit model of lacrimal gland inflammation-induced dry eye. Nagelhout TJ; Gamache DA; Roberts L; Brady MT; Yanni JM J Ocul Pharmacol Ther; 2005 Apr; 21(2):139-48. PubMed ID: 15857280 [TBL] [Abstract][Full Text] [Related]
9. Effect of dexamethasone treatment at variable therapeutic windows in reversing nitrogen mustard-induced corneal injuries in rabbit ocular in vivo model. Goswami DG; Mishra N; Kant R; Agarwal C; Ammar DA; Petrash JM; Tewari-Singh N; Agarwal R Toxicol Appl Pharmacol; 2022 Feb; 437():115904. PubMed ID: 35108561 [TBL] [Abstract][Full Text] [Related]
10. Treatment of ocular tissues exposed to nitrogen mustard: beneficial effect of zinc desferrioxamine combined with steroids. Morad Y; Banin E; Averbukh E; Berenshtein E; Obolensky A; Chevion M Invest Ophthalmol Vis Sci; 2005 May; 46(5):1640-6. PubMed ID: 15851563 [TBL] [Abstract][Full Text] [Related]
11. Degree and duration of corneal anesthesia after topical application of 0.4% oxybuprocaine hydrochloride ophthalmic solution in ophthalmically normal dogs. Douet JY; Michel J; Regnier A Am J Vet Res; 2013 Oct; 74(10):1321-6. PubMed ID: 24066916 [TBL] [Abstract][Full Text] [Related]
12. Anti-VEGF therapy (bevacizumab) for sulfur mustard-induced corneal neovascularization associated with delayed limbal stem cell deficiency in rabbits. Kadar T; Amir A; Cohen L; Cohen M; Sahar R; Gutman H; Horwitz V; Dachir S Curr Eye Res; 2014 May; 39(5):439-50. PubMed ID: 24215293 [TBL] [Abstract][Full Text] [Related]
13. Structural, morphological, and functional correlates of corneal endothelial toxicity following corneal exposure to sulfur mustard vapor. McNutt P; Tuznik K; Nelson M; Adkins A; Lyman M; Glotfelty E; Hughes J; Hamilton T Invest Ophthalmol Vis Sci; 2013 Oct; 54(10):6735-44. PubMed ID: 24045986 [TBL] [Abstract][Full Text] [Related]
14. Randomized clinical trial of a new dexamethasone delivery system (Surodex) for treatment of post-cataract surgery inflammation. Tan DT; Chee SP; Lim L; Lim AS Ophthalmology; 1999 Feb; 106(2):223-31. PubMed ID: 9951469 [TBL] [Abstract][Full Text] [Related]
15. Effect of 0.4% benoxinate hydrochloride on corneal sensitivity, measured using the non-contact corneal aesthesiometer (NCCA). Murphy PJ; Blades KJ; Patel S Optom Vis Sci; 1997 Dec; 74(12):1025-9. PubMed ID: 9423994 [TBL] [Abstract][Full Text] [Related]
16. Human exposure to acrolein: Time-dependence and individual variation in eye irritation. Claeson AS; Lind N Environ Toxicol Pharmacol; 2016 Jul; 45():20-7. PubMed ID: 27235799 [TBL] [Abstract][Full Text] [Related]
17. Toxicological effects of ocular acrolein exposure to eyelids in rabbits in vivo. Gupta S; Martin LM; Zhang E; Sinha PR; Landreneau J; Sinha NR; Hesemann NP; Mohan RR Exp Eye Res; 2023 Sep; 234():109575. PubMed ID: 37451567 [TBL] [Abstract][Full Text] [Related]
18. Melanocortins are comparable to corticosteroids as inhibitors of traumatic ocular inflammation in rabbits. Naveh N; Marshall J Graefes Arch Clin Exp Ophthalmol; 2001 Nov; 239(11):840-4. PubMed ID: 11789864 [TBL] [Abstract][Full Text] [Related]
19. Extent of corneal injury as a biomarker for hazard assessment and the development of alternative models to the Draize rabbit eye test. Jester JV Cutan Ocul Toxicol; 2006; 25(1):41-54. PubMed ID: 16702053 [TBL] [Abstract][Full Text] [Related]
20. Development of a mouse model for sulfur mustard-induced ocular injury and long-term clinical analysis of injury progression. Ruff AL; Jarecke AJ; Hilber DJ; Rothwell CC; Beach SL; Dillman JF Cutan Ocul Toxicol; 2013 Jun; 32(2):140-9. PubMed ID: 23106216 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]