BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 25363088)

  • 1. Strain-rate stiffening of cortical bone: observations and implications from nanoindentation experiments.
    Maruyama N; Shibata Y; Wurihan ; Swain MV; Kataoka Y; Takiguchi Y; Yamada A; Maki K; Miyazaki T
    Nanoscale; 2014 Dec; 6(24):14863-71. PubMed ID: 25363088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The emergence of an unusual stiffness profile in hierarchical biological tissues.
    Bar-On B; Wagner HD
    Acta Biomater; 2013 Sep; 9(9):8099-109. PubMed ID: 23669625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poroelastic response of articular cartilage by nanoindentation creep tests at different characteristic lengths.
    Taffetani M; Gottardi R; Gastaldi D; Raiteri R; Vena P
    Med Eng Phys; 2014 Jul; 36(7):850-8. PubMed ID: 24814573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationships of viscosity with contact hardness and modulus of bone matrix measured by nanoindentation.
    Kim DG; Huja SS; Lee HR; Tee BC; Hueni S
    J Biomech Eng; 2010 Feb; 132(2):024502. PubMed ID: 20370248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can a continuous mineral foam explain the stiffening of aged bone tissue? A micromechanical approach to mineral fusion in musculoskeletal tissues.
    Penta R; Raum K; Grimal Q; Schrof S; Gerisch A
    Bioinspir Biomim; 2016 May; 11(3):035004. PubMed ID: 27194094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A finite element model for direction-dependent mechanical response to nanoindentation of cortical bone allowing for anisotropic post-yield behavior of the tissue.
    Carnelli D; Gastaldi D; Sassi V; Contro R; Ortiz C; Vena P
    J Biomech Eng; 2010 Aug; 132(8):081008. PubMed ID: 20670057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viscoelastic Properties of Human Tracheal Tissues.
    Safshekan F; Tafazzoli-Shadpour M; Abdouss M; Shadmehr MB
    J Biomech Eng; 2017 Jan; 139(1):. PubMed ID: 27618230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of the cumulated deformation energy in the measurement by the DSI method on the selected mechanical properties of bone tissues.
    Makuch AM; Skalski KR; Pawlikowski M
    Acta Bioeng Biomech; 2017; 19(2):79-91. PubMed ID: 28869620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precision of nanoindentation protocols for measurement of viscoelasticity in cortical and trabecular bone.
    Isaksson H; Nagao S; MaƂkiewicz M; Julkunen P; Nowak R; Jurvelin JS
    J Biomech; 2010 Aug; 43(12):2410-7. PubMed ID: 20478559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of mineral content on the nanoindentation properties and nanoscale deformation mechanisms of bovine tibial cortical bone.
    Tai K; Qi HJ; Ortiz C
    J Mater Sci Mater Med; 2005 Oct; 16(10):947-59. PubMed ID: 16167103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of creep in non-homogenous samples of human cortical bone.
    Ertas AH; Winwood K; Zioupos P; Cotton JR
    Comput Methods Biomech Biomed Engin; 2012; 15(10):1121-8. PubMed ID: 21574078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A numerical study on indentation properties of cortical bone tissue: influence of anisotropy.
    Demiral M; Abdel-Wahab A; Silberschmidt V
    Acta Bioeng Biomech; 2015; 17(2):3-14. PubMed ID: 26399190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring viscoelasticity of soft samples using atomic force microscopy.
    Tripathy S; Berger EJ
    J Biomech Eng; 2009 Sep; 131(9):094507. PubMed ID: 19725704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of high-energy X-ray irradiation on creep mechanisms in bone and dentin.
    Deymier-Black AC; Singhal A; Yuan F; Almer JD; Brinson LC; Dunand DC
    J Mech Behav Biomed Mater; 2013 May; 21():17-31. PubMed ID: 23454365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoblasts generate harder, stiffer, and more delamination-resistant mineralized tissue on titanium than on polystyrene, associated with distinct tissue micro- and ultrastructure.
    Saruwatari L; Aita H; Butz F; Nakamura HK; Ouyang J; Yang Y; Chiou WA; Ogawa T
    J Bone Miner Res; 2005 Nov; 20(11):2002-16. PubMed ID: 16234974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiscale modelling and diffraction-based characterization of elastic behaviour of human dentine.
    Sui T; Sandholzer MA; Baimpas N; Dolbnya IP; Walmsley A; Lumley PJ; Landini G; Korsunsky AM
    Acta Biomater; 2013 Aug; 9(8):7937-47. PubMed ID: 23602879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indentation versus tensile measurements of Young's modulus for soft biological tissues.
    McKee CT; Last JA; Russell P; Murphy CJ
    Tissue Eng Part B Rev; 2011 Jun; 17(3):155-64. PubMed ID: 21303220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and mechanical properties of selected biological materials.
    Chen PY; Lin AY; Lin YS; Seki Y; Stokes AG; Peyras J; Olevsky EA; Meyers MA; McKittrick J
    J Mech Behav Biomed Mater; 2008 Jul; 1(3):208-26. PubMed ID: 19627786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deformation partitioning provides insight into elastic, plastic, and viscous contributions to bone material behavior.
    Ferguson VL
    J Mech Behav Biomed Mater; 2009 Aug; 2(4):364-74. PubMed ID: 19627843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscoelasticity of Tendons Under Transverse Compression.
    Paul Buckley C; Samuel Salisbury ST; Zavatsky AB
    J Biomech Eng; 2016 Oct; 138(10):. PubMed ID: 27496279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.