These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 25363139)

  • 81. Establishment of a transient CRISPR-Cas9 genome editing system in Candida glycerinogenes for co-production of ethanol and xylonic acid.
    Zhu M; Sun L; Lu X; Zong H; Zhuge B
    J Biosci Bioeng; 2019 Sep; 128(3):283-289. PubMed ID: 30967334
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Efficient bioethanol production by a recombinant flocculent Saccharomyces cerevisiae strain with a genome-integrated NADP+-dependent xylitol dehydrogenase gene.
    Matsushika A; Inoue H; Watanabe S; Kodaki T; Makino K; Sawayama S
    Appl Environ Microbiol; 2009 Jun; 75(11):3818-22. PubMed ID: 19329659
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Gene expression profiles of Candida glycerinogenes under combined heat and high-glucose stresses.
    Yang F; Lu X; Zong H; Ji H; Zhuge B
    J Biosci Bioeng; 2018 Oct; 126(4):464-469. PubMed ID: 29724569
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Transformation of industrialized strain Candida glycerinogenes with resistant gene zeocin via Agrobacterium tumefaciens.
    Zhiming R; Zheng M; Wei S; Huiying F; Jian Z
    Curr Microbiol; 2008 Jul; 57(1):12-7. PubMed ID: 18415036
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Identification of a novel HOG1 homologue from an industrial glycerol producer Candida glycerinogenes.
    Ji H; Lu X; Wang C; Zong H; Fang H; Sun J; Zhuge J; Zhuge B
    Curr Microbiol; 2014 Dec; 69(6):909-14. PubMed ID: 25119307
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Genetic transformation of xylose-fermenting yeast Pichia stipitis. Scientific note.
    Ho NW; Petros D; Deng XX
    Appl Biochem Biotechnol; 1991; 28-29():369-75. PubMed ID: 1929374
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Production of Caffeic Acid with Co-fermentation of Xylose and Glucose by Multi-modular Engineering in
    Wang XH; Zhao C; Lu XY; Zong H; Zhuge B
    ACS Synth Biol; 2022 Feb; 11(2):900-908. PubMed ID: 35138824
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Cloning and expression of Candida guilliermondii xylose reductase gene (xyl1) in Pichia pastoris.
    Handumrongkul C; Ma DP; Silva JL
    Appl Microbiol Biotechnol; 1998 Apr; 49(4):399-404. PubMed ID: 9615481
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Segregation of altered parental properties in fusions between Saccharomyces cerevisiae and the D-xylose fermenting yeasts Candida shehatae and Pichia stipitis.
    Gupthar AS
    Can J Microbiol; 1992 Dec; 38(12):1233-7. PubMed ID: 1288841
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Glycerol production by yeasts under osmotic and sulfite stress.
    Petrovska B; Winkelhausen E; Kuzmanova S
    Can J Microbiol; 1999 Aug; 45(8):695-9. PubMed ID: 10528402
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Comparison of two models of surface display of xylose reductase in the Saccharomyces cerevisiae cell wall.
    Hossain AS; Teparić R; Mrša V
    Enzyme Microb Technol; 2019 Apr; 123():8-14. PubMed ID: 30686349
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Improving the productivity of Candida glycerinogenes in the fermentation of ethanol from non-detoxified sugarcane bagasse hydrolysate by a hexose transporter mutant.
    Qiao Y; Zhou J; Lu X; Zong H; Zhuge B
    J Appl Microbiol; 2021 Oct; 131(4):1787-1799. PubMed ID: 33694233
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Two novel gene expression systems based on the yeasts Schwanniomyces occidentalis and Pichia stipitis.
    Piontek M; Hagedorn J; Hollenberg CP; Gellissen G; Strasser AW
    Appl Microbiol Biotechnol; 1998 Sep; 50(3):331-8. PubMed ID: 9802218
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Identification and application of novel low pH-inducible promoters for lactic acid production in the tolerant yeast Candida glycerinogenes.
    Hou Q; He Q; Liu G; Lu X; Zong H; Chen W; Zhuge B
    J Biosci Bioeng; 2019 Jul; 128(1):8-12. PubMed ID: 30709704
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Identification and characterization from Candida glycerinogenes of hexose transporters having high efficiency at high glucose concentrations.
    Liang Z; Liu D; Lu X; Zong H; Song J; Zhuge B
    Appl Microbiol Biotechnol; 2018 Jul; 102(13):5557-5567. PubMed ID: 29705955
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Metabolic Engineering of
    Zhao C; Wang XH; Lu XY; Zong H; Zhuge B
    ACS Synth Biol; 2023 Jun; 12(6):1836-1844. PubMed ID: 37271978
    [TBL] [Abstract][Full Text] [Related]  

  • 97. A high-copy-number ADE2-bearing plasmid for transformation of Candida glabrata.
    Hanic-Joyce PJ; Joyce PB
    Gene; 1998 May; 211(2):395-400. PubMed ID: 9602176
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Construction of a novel plasmid for an industrial yeast Candida glycerinogenes by dual-autonomously replicating sequence strategy.
    Dong D; Wang X; Zong H; Lu X; Zhuge B
    J Biosci Bioeng; 2023 Jan; 135(1):10-16. PubMed ID: 36253249
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Identification of key residues for efficient glucose transport by the hexose transporter CgHxt4 in high sugar fermentation yeast Candida glycerinogenes.
    Qiao Y; Li C; Lu X; Zong H; Zhuge B
    Appl Microbiol Biotechnol; 2021 Oct; 105(19):7295-7307. PubMed ID: 34515842
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Genetic analysis of D-xylose metabolism by endophytic yeast strains of Rhodotorula graminis and Rhodotorula mucilaginosa.
    Xu P; Bura R; Doty SL
    Genet Mol Biol; 2011 Jul; 34(3):471-8. PubMed ID: 21931522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.