These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 2536344)

  • 1. Hyperoxia during reperfusion is a factor in reperfusion injury.
    Wolbarsht ML; Fridovich I
    Free Radic Biol Med; 1989; 6(1):61-2. PubMed ID: 2536344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypothesis that the acidification of a tissue which takes place during ischemia can lead to tissue hyperoxia during reperfusion due to the Bohr effect.
    Barja de Quiroga G
    Free Radic Biol Med; 1990; 8(5):487-9. PubMed ID: 2253898
    [No Abstract]   [Full Text] [Related]  

  • 3. Hyperoxia suppresses excessive superoxide anion radical generation in blood, oxidative stress, early inflammation, and endothelial injury in forebrain ischemia/reperfusion rats: laboratory study.
    Fujita M; Tsuruta R; Kaneko T; Otsuka Y; Kutsuna S; Izumi T; Aoki T; Shitara M; Kasaoka S; Maruyama I; Yuasa M; Maekawa T
    Shock; 2010 Sep; 34(3):299-305. PubMed ID: 20016404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperoxia and xanthine dehydrogenase/oxidase activities in rat lung and heart.
    Elsayed NM; Tierney DF
    Arch Biochem Biophys; 1989 Sep; 273(2):281-6. PubMed ID: 2549869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is the autoxidation of catecholamines involved in ischemia-reperfusion injury?
    Jewett SL; Eddy LJ; Hochstein P
    Free Radic Biol Med; 1989; 6(2):185-8. PubMed ID: 2496008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mathematical model describing the generation of oxygen radicals in mitochondria during ischemia-reperfusion.
    Volk SE; Zhilyaev AM
    Biomed Sci; 1991; 2(5):503-10. PubMed ID: 1668645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyruvate but not lactate prevents NADH-induced myoglobin oxidation.
    Olek RA; Antosiewicz J; Popinigis J; Gabbianelli R; Fedeli D; Falcioni G
    Free Radic Biol Med; 2005 Jun; 38(11):1484-90. PubMed ID: 15890622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene therapy for oxidant injury-related diseases: adenovirus-mediated transfer of superoxide dismutase and catalase cDNAs protects against hyperoxia but not against ischemia-reperfusion lung injury.
    Danel C; Erzurum SC; Prayssac P; Eissa NT; Crystal RG; Hervé P; Baudet B; Mazmanian M; Lemarchand P
    Hum Gene Ther; 1998 Jul; 9(10):1487-96. PubMed ID: 9681420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contractile and metabolic function following an ischemia-reperfusion injury in skeletal muscle: influence of oxygen free radical scavengers.
    Long JW; Laster JL; Stevens RP; Silver WP; Silver D
    Microcirc Endothelium Lymphatics; 1989; 5(3-5):351-63. PubMed ID: 2637948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperoxia during reperfusion is a factor in reperfusion injury.
    Mickel HS
    Free Radic Biol Med; 1990; 8(3):269. PubMed ID: 2341057
    [No Abstract]   [Full Text] [Related]  

  • 11. Experimental evaluation of oxygen free radical scavengers in the prevention of reperfusion injury in skeletal muscle.
    Oredsson S; Plate G; Qvarfordt P
    Eur J Surg; 1994 Feb; 160(2):97-103. PubMed ID: 8193214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Normobaric Hyperoxia Extends Neuro- and Vaso-Protection of N-Acetylcysteine in Transient Focal Ischemia.
    Liu Y; Liu WC; Sun Y; Shen X; Wang X; Shu H; Pan R; Liu CF; Liu W; Liu KJ; Jin X
    Mol Neurobiol; 2017 Jul; 54(5):3418-3427. PubMed ID: 27177548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free radical injury in skeletal muscle ischemia and reperfusion.
    Choudhury NA; Sakaguchi S; Koyano K; Matin AF; Muro H
    J Surg Res; 1991 Nov; 51(5):392-8. PubMed ID: 1661796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Mechanism of the formation of ischemic gastric injury induced by oxygen radicals in rats].
    Itoh M; Takeuchi T
    Nihon Naika Gakkai Zasshi; 1990 Sep; 79(9):1225-9. PubMed ID: 2175336
    [No Abstract]   [Full Text] [Related]  

  • 15. Ischemia-induced reperfusion injury in muscle flaps: pathogenesis and major source of free radicals.
    Pang CY
    J Reconstr Microsurg; 1990 Jan; 6(1):77-83. PubMed ID: 2407843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of oxygen radicals in the microcirculatory manifestations of postischemic injury.
    Menger MD; Lehr HA; Messmer K
    Klin Wochenschr; 1991 Dec; 69(21-23):1050-5. PubMed ID: 1665884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive oxygen species contribute to oxygen-related lung injury after acid aspiration.
    Nader-Djalal N; Knight PR; Thusu K; Davidson BA; Holm BA; Johnson KJ; Dandona P
    Anesth Analg; 1998 Jul; 87(1):127-33. PubMed ID: 9661561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implication of superoxide radicals on ischemia-reperfusion-induced skeletal muscle injury in rats.
    Kawasaki S; Sugiyama S; Ishiguro N; Ozawa T; Miura T
    Eur Surg Res; 1993; 25(3):129-36. PubMed ID: 8388794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new idea about reducing reperfusion injury in ischemic stroke: Gradual reperfusion.
    Shi J; Liu Y; Duan Y; Sun Z; Wang B; Meng R; Ji X
    Med Hypotheses; 2013 Feb; 80(2):134-6. PubMed ID: 23232107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The double-edged role of nitric oxide in brain function and superoxide-mediated injury.
    Beckman JS
    J Dev Physiol; 1991 Jan; 15(1):53-9. PubMed ID: 1678755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.