These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25363681)

  • 1. The atomistic mechanism of carbon nanotube cutting catalyzed by nickel under an electron beam.
    Lebedeva IV; Chamberlain TW; Popov AM; Knizhnik AA; Zoberbier T; Biskupek J; Kaiser U; Khlobystov AN
    Nanoscale; 2014 Dec; 6(24):14877-90. PubMed ID: 25363681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precise graphene cutting using a catalyst at a probe tip under an electron beam.
    Sinitsa AS; Polynskaya YG; Lebedeva IV; Knizhnik AA; Popov AM
    Phys Chem Chem Phys; 2023 Aug; 25(30):20715-20727. PubMed ID: 37489862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions and reactions of transition metal clusters with the interior of single-walled carbon nanotubes imaged at the atomic scale.
    Zoberbier T; Chamberlain TW; Biskupek J; Kuganathan N; Eyhusen S; Bichoutskaia E; Kaiser U; Khlobystov AN
    J Am Chem Soc; 2012 Feb; 134(6):3073-9. PubMed ID: 22263637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ag-catalysed cutting of multi-walled carbon nanotubes.
    La Torre A; Rance GA; Miners SA; Herreros Lucas C; Smith EF; Fay MW; Zoberbier T; Giménez-López MC; Kaiser U; Brown PD; Khlobystov AN
    Nanotechnology; 2016 Apr; 27(17):175604. PubMed ID: 26987452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the Interactions and Bonding between Carbon and Group VIII Metals at the Atomic Scale.
    Zoberbier T; Chamberlain TW; Biskupek J; Suyetin M; Majouga AG; Besley E; Kaiser U; Khlobystov AN
    Small; 2016 Mar; 12(12):1649-57. PubMed ID: 26848826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of single-walled carbon nanotube nucleation, growth, and healing determined using QM/MD methods.
    Page AJ; Ohta Y; Irle S; Morokuma K
    Acc Chem Res; 2010 Oct; 43(10):1375-85. PubMed ID: 20954752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct Correlation of Carbon Nanotube Nucleation and Growth with the Atomic Structure of Rhenium Nanocatalysts Stimulated and Imaged by the Electron Beam.
    Cao K; Chamberlain TW; Biskupek J; Zoberbier T; Kaiser U; Khlobystov AN
    Nano Lett; 2018 Oct; 18(10):6334-6339. PubMed ID: 30185052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of Nickel Clusters Wrapped in Carbon Cages: Toward New Endohedral Metallofullerene Synthesis.
    Sinitsa AS; Chamberlain TW; Zoberbier T; Lebedeva IV; Popov AM; Knizhnik AA; McSweeney RL; Biskupek J; Kaiser U; Khlobystov AN
    Nano Lett; 2017 Feb; 17(2):1082-1089. PubMed ID: 28075593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum chemical molecular dynamics simulation of single-walled carbon nanotube cap nucleation on an iron particle.
    Ohta Y; Okamoto Y; Page AJ; Irle S; Morokuma K
    ACS Nano; 2009 Nov; 3(11):3413-20. PubMed ID: 19827761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capturing the motion of molecular nanomaterials encapsulated within carbon nanotubes with ultrahigh temporal resolution.
    Warner JH; Ito Y; Rümmeli MH; Büchner B; Shinohara H; Briggs GA
    ACS Nano; 2009 Oct; 3(10):3037-44. PubMed ID: 19743832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of nickel-carbon heterofullerenes under electron irradiation.
    Sinitsa AS; Lebedeva IV; Knizhnik AA; Popov AM; Skowron ST; Bichoutskaia E
    Dalton Trans; 2014 May; 43(20):7499-513. PubMed ID: 24695822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical investigation on carbon nucleation on nickel carbides at initial stages of single-walled carbon nanotube formation.
    Yang Z; Wang Q; Shan X; Yang SW; Zhu H
    Phys Chem Chem Phys; 2014 Sep; 16(36):19654-60. PubMed ID: 25111778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic scale growth dynamics of nanocrystals within carbon nanotubes.
    Warner JH; Plant SR; Young NP; Porfyrakis K; Kirkland AI; Briggs GA
    ACS Nano; 2011 Feb; 5(2):1410-7. PubMed ID: 21268597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth of chiral single-walled carbon nanotube caps in the presence of a cobalt cluster.
    Gómez-Gualdrón DA; Balbuena PB
    Nanotechnology; 2009 May; 20(21):215601. PubMed ID: 19423932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon nanotube nucleation driven by catalyst morphology dynamics.
    Pigos E; Penev ES; Ribas MA; Sharma R; Yakobson BI; Harutyunyan AR
    ACS Nano; 2011 Dec; 5(12):10096-101. PubMed ID: 22082229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel in situ fabrication of chestnut-like carbon nanotube spheres from polypropylene and nickel formate.
    Chen X; He J; Yan C; Tang H
    J Phys Chem B; 2006 Nov; 110(43):21684-9. PubMed ID: 17064126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Splitting and joining in carbon nanotube/nanoribbon/nanotetrahedron growth.
    Hasegawa T; Kohno H
    Phys Chem Chem Phys; 2015 Feb; 17(5):3009-13. PubMed ID: 25559588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the metal-carbon interface in FePt catalyzed carbon nanotubes.
    Pohl D; Schäffel F; Rümmeli MH; Mohn E; Täschner C; Schultz L; Kisielowski C; Rellinghaus B
    Phys Rev Lett; 2011 Oct; 107(18):185501. PubMed ID: 22107641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth mechanism of single-walled carbon nanotube from catalytic reaction inside carbon nanotube template.
    Izu Y; Shiomi J; Takagi Y; Okada S; Maruyama S
    ACS Nano; 2010 Aug; 4(8):4769-75. PubMed ID: 20731452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.