BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 25363686)

  • 21. [Blood vessel tissue engineering: seeding vascular smooth muscle cells and endothelial cells sequentially on biodegradable scaffold in vitro].
    Wen SJ; Zhao LM; Li P; Li JX; Liu Y; Liu JL; Chen YC
    Zhonghua Yi Xue Za Zhi; 2005 Mar; 85(12):816-8. PubMed ID: 15949397
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The independent role of cyclic flexure in the early in vitro development of an engineered heart valve tissue.
    Engelmayr GC; Rabkin E; Sutherland FW; Schoen FJ; Mayer JE; Sacks MS
    Biomaterials; 2005 Jan; 26(2):175-87. PubMed ID: 15207464
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regional specific modulation of the glycocalyx and smooth muscle cell contractile apparatus in conduit arteries of tail-suspended rats.
    Kang H; Fan Y; Zhao P; Ren C; Wang Z; Deng X
    J Appl Physiol (1985); 2016 Mar; 120(5):537-45. PubMed ID: 26679611
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Construction of functional soft tissues from premodulated smooth muscle cells using a bioreactor system.
    Cha JM; Park SN; Park GO; Kim JK; Suh H
    Artif Organs; 2006 Sep; 30(9):704-7. PubMed ID: 16934099
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tensile properties of vascular smooth muscle cells: bridging vascular and cellular biomechanics.
    Matsumoto T; Nagayama K
    J Biomech; 2012 Mar; 45(5):745-55. PubMed ID: 22177671
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional characterization of human coronary artery smooth muscle cells under cyclic mechanical strain in a degradable polyurethane scaffold.
    Sharifpoor S; Simmons CA; Labow RS; Paul Santerre J
    Biomaterials; 2011 Jul; 32(21):4816-29. PubMed ID: 21463894
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of stretch on vascular smooth muscle cell phenotype in vitro.
    Halka AT; Turner NJ; Carter A; Ghosh J; Murphy MO; Kirton JP; Kielty CM; Walker MG
    Cardiovasc Pathol; 2008; 17(2):98-102. PubMed ID: 18329554
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulating orientation and phenotype of primary vascular smooth muscle cells by biodegradable films patterned with arrays of microchannels and discontinuous microwalls.
    Cao Y; Poon YF; Feng J; Rayatpisheh S; Chan V; Chan-Park MB
    Biomaterials; 2010 Aug; 31(24):6228-38. PubMed ID: 20537704
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanical, biochemical, and extracellular matrix effects on vascular smooth muscle cell phenotype.
    Stegemann JP; Hong H; Nerem RM
    J Appl Physiol (1985); 2005 Jun; 98(6):2321-7. PubMed ID: 15894540
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Shear-stress preconditioning and tissue-engineering-based paradigms for generating arterial substitutes.
    Baguneid M; Murray D; Salacinski HJ; Fuller B; Hamilton G; Walker M; Seifalian AM
    Biotechnol Appl Biochem; 2004 Apr; 39(Pt 2):151-7. PubMed ID: 15032735
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of scaffold architecture and pore size on smooth muscle cell growth.
    Lee M; Wu BM; Dunn JC
    J Biomed Mater Res A; 2008 Dec; 87(4):1010-6. PubMed ID: 18257081
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanical loading modulates the differentiation state of vascular smooth muscle cells.
    Grenier G; Rémy-Zolghadri M; Bergeron F; Guignard R; Baker K; Labbé R; Auger FA; Germain L
    Tissue Eng; 2006 Nov; 12(11):3159-70. PubMed ID: 17518630
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of pulsatile bioreactor culture on vascular smooth muscle cells seeded on electrospun poly (lactide-co-ε-caprolactone) scaffold.
    Mun CH; Jung Y; Kim SH; Kim HC; Kim SH
    Artif Organs; 2013 Dec; 37(12):E168-78. PubMed ID: 23834728
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shear stress and vascular smooth muscle cells promote endothelial differentiation of endothelial progenitor cells via activation of Akt.
    Ye C; Bai L; Yan ZQ; Wang YH; Jiang ZL
    Clin Biomech (Bristol, Avon); 2008; 23 Suppl 1():S118-24. PubMed ID: 17928113
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A modular tissue engineering construct containing smooth muscle cells and endothelial cells.
    Leung BM; Sefton MV
    Ann Biomed Eng; 2007 Dec; 35(12):2039-49. PubMed ID: 17882548
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physiologic pulsatile flow bioreactor conditioning of poly(ethylene glycol)-based tissue engineered vascular grafts.
    Hahn MS; McHale MK; Wang E; Schmedlen RH; West JL
    Ann Biomed Eng; 2007 Feb; 35(2):190-200. PubMed ID: 17180465
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regional dependency of the vascular smooth muscle cell contribution to the mechanical properties of the pig ascending aortic tissue.
    Tremblay D; Cartier R; Mongrain R; Leask RL
    J Biomech; 2010 Aug; 43(12):2448-51. PubMed ID: 20478560
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effective seeding of smooth muscle cells into tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering.
    Song Y; Wennink JW; Kamphuis MM; Vermes I; Poot AA; Feijen J; Grijpma DW
    J Biomed Mater Res A; 2010 Nov; 95(2):440-6. PubMed ID: 20648539
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Normal shear stress and vascular smooth muscle cells modulate migration of endothelial cells through histone deacetylase 6 activation and tubulin acetylation.
    Wang YH; Yan ZQ; Qi YX; Cheng BB; Wang XD; Zhao D; Shen BR; Jiang ZL
    Ann Biomed Eng; 2010 Mar; 38(3):729-37. PubMed ID: 20069369
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combining cell sheet technology and electrospun scaffolding for engineered tubular, aligned, and contractile blood vessels.
    Rayatpisheh S; Heath DE; Shakouri A; Rujitanaroj PO; Chew SY; Chan-Park MB
    Biomaterials; 2014 Mar; 35(9):2713-9. PubMed ID: 24411678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.