These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 2536371)

  • 1. Proton motive force-dependent and -independent protein translocation revealed by an efficient in vitro assay system of Escherichia coli.
    Yamada H; Tokuda H; Mizushima S
    J Biol Chem; 1989 Jan; 264(3):1723-8. PubMed ID: 2536371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro translocation of protein across Escherichia coli membrane vesicles requires both the proton motive force and ATP.
    Yamane K; Ichihara S; Mizushima S
    J Biol Chem; 1987 Feb; 262(5):2358-62. PubMed ID: 3029075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high concentration of SecA allows proton motive force-independent translocation of a model secretory protein into Escherichia coli membrane vesicles.
    Yamada H; Matsuyama S; Tokuda H; Mizushima S
    J Biol Chem; 1989 Nov; 264(31):18577-81. PubMed ID: 2553714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro analysis of the process of translocation of OmpA across the Escherichia coli cytoplasmic membrane. A translocation intermediate accumulates transiently in the absence of the proton motive force.
    Tani K; Shiozuka K; Tokuda H; Mizushima S
    J Biol Chem; 1989 Nov; 264(31):18582-8. PubMed ID: 2553715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The proton motive force lowers the level of ATP required for the in vitro translocation of a secretory protein in Escherichia coli.
    Shiozuka K; Tani K; Mizushima S; Tokuda H
    J Biol Chem; 1990 Nov; 265(31):18843-7. PubMed ID: 2229045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP is essential for protein translocation into Escherichia coli membrane vesicles.
    Chen L; Tai PC
    Proc Natl Acad Sci U S A; 1985 Jul; 82(13):4384-8. PubMed ID: 2861605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane vesicles containing overproduced SecY and SecE exhibit high translocation ATPase activity and countermovement of protons in a SecA- and presecretory protein-dependent manner.
    Kawasaki S; Mizushima S; Tokuda H
    J Biol Chem; 1993 Apr; 268(11):8193-8. PubMed ID: 8463329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energetically distinct early and late stages of HlyB/HlyD-dependent secretion across both Escherichia coli membranes.
    Koronakis V; Hughes C; Koronakis E
    EMBO J; 1991 Nov; 10(11):3263-72. PubMed ID: 1915293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton motive force is not obligatory for growth of Escherichia coli.
    Kinoshita N; Unemoto T; Kobayashi H
    J Bacteriol; 1984 Dec; 160(3):1074-7. PubMed ID: 6389506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A proline residue near the amino terminus of the mature domain of secretory proteins lowers the level of the proton motive force required for translocation.
    Lu HM; Yamada H; Mizushima S
    J Biol Chem; 1991 May; 266(15):9977-82. PubMed ID: 1851761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of H+-ATPase and proton motive force in ATP-dependent protein translocation in vitro.
    Chen LL; Tai PC
    J Bacteriol; 1986 Jul; 167(1):389-92. PubMed ID: 2873129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstitution of translocation activity for secretory proteins from solubilized components of Escherichia coli.
    Tokuda H; Shiozuka K; Mizushima S
    Eur J Biochem; 1990 Sep; 192(3):583-9. PubMed ID: 2170124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precursor-specific requirements for SecA, SecB, and delta muH+ during protein export of Escherichia coli.
    Ernst F; Hoffschulte HK; Thome-Kromer B; Swidersky UE; Werner PK; Müller M
    J Biol Chem; 1994 Apr; 269(17):12840-5. PubMed ID: 8175698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Active electrogenic transport H+ in plasma membrane vesicles of cow parsnip phloem cells].
    Kalinin VA; Opritov VA; Shvets IM
    Biofizika; 1982; 27(1):58-61. PubMed ID: 6461361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. H+-pumping ATPase has little stimulatory effect on in vitro translocation of a model protein into Vibrio alginolyticus inside-out membrane vesicles.
    Kim YJ; Rhee SK
    Mol Cells; 1997 Aug; 7(4):473-7. PubMed ID: 9339889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of antibiotics and other inhibitors on ATP-dependent protein translocation into membrane vesicles.
    Chen L; Tai PC
    J Bacteriol; 1987 Jun; 169(6):2373-9. PubMed ID: 2438267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient in vitro translocation into Escherichia coli membrane vesicles of a protein carrying an uncleavable signal peptide. Characterization of the translocation process.
    Yamane K; Matsuyama S; Mizushima S
    J Biol Chem; 1988 Apr; 263(11):5368-72. PubMed ID: 3281938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and reconstitution of the F1F0-ATP synthase from alkaliphilic Bacillus firmus OF4. Evidence that the enzyme translocates H+ but not Na+.
    Hicks DB; Krulwich TA
    J Biol Chem; 1990 Nov; 265(33):20547-54. PubMed ID: 2173711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy-dependent in vitro translocation of a model protein into Escherichia coli inverted membrane vesicles can take place efficiently in the complete absence of the cytosol fraction.
    Matsuyama S; Mizushima S
    J Biol Chem; 1989 Feb; 264(6):3583-7. PubMed ID: 2644286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of rates of H+, Na+ and K+ transport across phospholipid vesicular membrane by the combined action of carbonyl cyanide m-chlorophenylhydrazone and valinomycin: temperature-jump studies.
    Prabhananda BS; Kombrabail MH
    Biochim Biophys Acta; 1995 May; 1235(2):323-35. PubMed ID: 7756342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.