These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 25363730)

  • 1. Encoding abrupt and uniform dopant profiles in vapor-liquid-solid nanowires by suppressing the reservoir effect of the liquid catalyst.
    Christesen JD; Pinion CW; Zhang X; McBride JR; Cahoon JF
    ACS Nano; 2014 Nov; 8(11):11790-8. PubMed ID: 25363730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing Morphology in Epitaxial Silicon Nanowires: The Role of Gold, Surface Chemistry, and Phosphorus Doping.
    Kim S; Hill DJ; Pinion CW; Christesen JD; McBride JR; Cahoon JF
    ACS Nano; 2017 May; 11(5):4453-4462. PubMed ID: 28323413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying crystallization- and incorporation-limited regimes during vapor-liquid-solid growth of Si nanowires.
    Pinion CW; Nenon DP; Christesen JD; Cahoon JF
    ACS Nano; 2014 Jun; 8(6):6081-8. PubMed ID: 24815744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Encoding Highly Nonequilibrium Boron Concentrations and Abrupt Morphology in p-Type/n-Type Silicon Nanowire Superlattices.
    Hill DJ; Teitsworth TS; Kim S; Christesen JD; Cahoon JF
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):37105-37111. PubMed ID: 28956906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling heterojunction abruptness in VLS-grown semiconductor nanowires via in situ catalyst alloying.
    Perea DE; Li N; Dickerson RM; Misra A; Picraux ST
    Nano Lett; 2011 Aug; 11(8):3117-22. PubMed ID: 21696182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Guiding vapor-liquid-solid nanowire growth using SiO2.
    Quitoriano NJ; Wu W; Kamins TI
    Nanotechnology; 2009 Apr; 20(14):145303. PubMed ID: 19420522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gradients of Be-dopant concentration in self-catalyzed GaAs nanowires.
    Rizzo Piton M; Koivusalo E; Hakkarainen T; Galeti HVA; De Giovanni Rodrigues A; Talmila S; Souto S; Lupo D; Galvão Gobato Y; Guina M
    Nanotechnology; 2019 Aug; 30(33):335709. PubMed ID: 30995612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Dopant Compensation on Graded p-n Junctions in Si Nanowires.
    Amit I; Jeon N; Lauhon LJ; Rosenwaks Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):128-34. PubMed ID: 26650197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanowire Kinking Modulates Doping Profiles by Reshaping the Liquid-Solid Growth Interface.
    Sun Z; Seidman DN; Lauhon LJ
    Nano Lett; 2017 Jul; 17(7):4518-4525. PubMed ID: 28658572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diameter-dependent dopant location in silicon and germanium nanowires.
    Xie P; Hu Y; Fang Y; Huang J; Lieber CM
    Proc Natl Acad Sci U S A; 2009 Sep; 106(36):15254-8. PubMed ID: 19706402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. For nanowire growth, vapor-solid-solid (vapor-solid) mechanism is actually vapor-quasisolid-solid (vapor-quasiliquid-solid) mechanism.
    Noor Mohammad S
    J Chem Phys; 2009 Dec; 131(22):224702. PubMed ID: 20001071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth dynamics of SiGe nanowires by the vapour-liquid-solid method and its impact on SiGe/Si axial heterojunction abruptness.
    Pura JL; Periwal P; Baron T; Jiménez J
    Nanotechnology; 2018 Aug; 29(35):355602. PubMed ID: 29869997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of p-type GaN nanowires.
    Kim SW; Park YH; Kim I; Park TE; Kwon BW; Choi WK; Choi HJ
    Nanoscale; 2013 Sep; 5(18):8550-4. PubMed ID: 23892611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of an intrinsic source of doping inhomogeneity in vapor-liquid-solid-grown nanowires.
    Connell JG; Yoon K; Perea DE; Schwalbach EJ; Voorhees PW; Lauhon LJ
    Nano Lett; 2013 Jan; 13(1):199-206. PubMed ID: 23237496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the incorporation of Sn in vapor-liquid-solid GeSn nanowires by modulation of the droplet composition.
    Zeghouane M; Hijazi H; Bassani F; Lefevre G; Martinez E; Luciani T; Gentile P; Dubrovskii VG; Salem B
    Nanotechnology; 2022 Mar; 33(24):. PubMed ID: 35263731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Producing Atomically Abrupt Axial Heterojunctions in Silicon-Germanium Nanowires by Thermal Oxidation.
    Lee HY; Shen TH; Hu CY; Tsai YY; Wen CY
    Nano Lett; 2017 Dec; 17(12):7494-7499. PubMed ID: 29185770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay of Kinetic and Thermodynamic Factors in the Stationary Composition of Vapor-Liquid-Solid IIIV
    Dubrovskii VG; Leshchenko ED
    Nanomaterials (Basel); 2024 Aug; 14(16):. PubMed ID: 39195371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatially resolved correlation of active and total doping concentrations in VLS grown nanowires.
    Amit I; Givan U; Connell JG; Paul DF; Hammond JS; Lauhon LJ; Rosenwaks Y
    Nano Lett; 2013 Jun; 13(6):2598-604. PubMed ID: 23668801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composition-dependent interfacial abruptness in Au-catalyzed Si(1-x)Ge(x)/Si/Si(1-x)Ge(x) nanowire heterostructures.
    Periwal P; Sibirev NV; Patriarche G; Salem B; Bassani F; Dubrovskii VG; Baron T
    Nano Lett; 2014 Sep; 14(9):5140-7. PubMed ID: 25118977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the vapor-liquid-solid mechanism for nanowire growth and a model for this mechanism.
    Mohammad SN
    Nano Lett; 2008 May; 8(5):1532-8. PubMed ID: 18380484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.