These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 25363730)

  • 21. Nanochannel-directed growth of multi-segment nanowire heterojunctions of metallic Au(1-x)Ge(x) and semiconducting Ge.
    Li X; Meng G; Qin S; Xu Q; Chu Z; Zhu X; Kong M; Li AP
    ACS Nano; 2012 Jan; 6(1):831-6. PubMed ID: 22195681
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of single crystal Sn-doped In2O3 nanowires: size-dependent conductive characteristics.
    Chang WC; Kuo CH; Lee PJ; Chueh YL; Lin SJ
    Phys Chem Chem Phys; 2012 Oct; 14(37):13041-5. PubMed ID: 22886004
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vapor liquid solid-hydride vapor phase epitaxy (VLS-HVPE) growth of ultra-long defect-free GaAs nanowires: ab initio simulations supporting center nucleation.
    André Y; Lekhal K; Hoggan P; Avit G; Cadiz F; Rowe A; Paget D; Petit E; Leroux C; Trassoudaine A; Ramdani MR; Monier G; Colas D; Ajib R; Castelluci D; Gil E
    J Chem Phys; 2014 May; 140(19):194706. PubMed ID: 24852556
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Obtaining uniform dopant distributions in VLS-grown Si nanowires.
    Koren E; Hyun JK; Givan U; Hemesath ER; Lauhon LJ; Rosenwaks Y
    Nano Lett; 2011 Jan; 11(1):183-7. PubMed ID: 21126102
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-Consistent Model for the Compositional Profiles in Vapor-Liquid-Solid III-V Nanowire Heterostructures Based on Group V Interchange.
    Dubrovskii VG
    Nanomaterials (Basel); 2024 May; 14(10):. PubMed ID: 38786777
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultra-fast vapour-liquid-solid synthesis of Si nanowires using ion-beam implanted gallium as catalyst.
    Hetzel M; Lugstein A; Zeiner C; Wójcik T; Pongratz P; Bertagnolli E
    Nanotechnology; 2011 Sep; 22(39):395601. PubMed ID: 21891844
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metastability of Au-Ge liquid nanocatalysts: Ge vapor-liquid-solid nanowire growth far below the bulk eutectic temperature.
    Adhikari H; Marshall AF; Goldthorpe IA; Chidsey CE; McIntyre PC
    ACS Nano; 2007 Dec; 1(5):415-22. PubMed ID: 19206662
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Focused electron beam induced deposition of gold catalyst templates for Si-nanowire synthesis.
    Hochleitner G; Steinmair M; Lugstein A; Roediger P; Wanzenboeck HD; Bertagnolli E
    Nanotechnology; 2011 Jan; 22(1):015302. PubMed ID: 21135454
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solid-Liquid-Vapor Etching of Semiconductor Nanowires.
    Hui HY; Filler MA
    Nano Lett; 2015 Oct; 15(10):6939-45. PubMed ID: 26383971
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Si Doping of Vapor-Liquid-Solid GaAs Nanowires: n-Type or p-Type?
    Hijazi H; Monier G; Gil E; Trassoudaine A; Bougerol C; Leroux C; Castellucci D; Robert-Goumet C; Hoggan PE; André Y; Isik Goktas N; LaPierre RR; Dubrovskii VG
    Nano Lett; 2019 Jul; 19(7):4498-4504. PubMed ID: 31203632
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Directed synthesis of germanium oxide nanowires by vapor-liquid-solid oxidation.
    Gunji M; Thombare SV; Hu S; McIntyre PC
    Nanotechnology; 2012 Sep; 23(38):385603. PubMed ID: 22947505
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dislocation-induced nanoparticle decoration on a GaN nanowire.
    Yang B; Yuan F; Liu Q; Huang N; Qiu J; Staedler T; Liu B; Jiang X
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2790-6. PubMed ID: 25562572
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Field-effect transistors based on silicon nanowire arrays: effect of the good and the bad silicon nanowires.
    Wang B; Stelzner T; Dirawi R; Assad O; Shehada N; Christiansen S; Haick H
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4251-8. PubMed ID: 22817278
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Complementary Metal Oxide Semiconductor-Compatible, High-Mobility, ⟨111⟩-Oriented GaSb Nanowires Enabled by Vapor-Solid-Solid Chemical Vapor Deposition.
    Yang ZX; Liu L; Yip S; Li D; Shen L; Zhou Z; Han N; Hung TF; Pun EY; Wu X; Song A; Ho JC
    ACS Nano; 2017 Apr; 11(4):4237-4246. PubMed ID: 28355076
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Composition and local strain mapping in Au-catalyzed axial Si/Ge nanowires.
    Vincent L; Boukhicha R; Cherkashin N; Reboh S; Patriarche G; Renard C; Yam V; Fossard F; Bouchier D
    Nanotechnology; 2012 Oct; 23(39):395701. PubMed ID: 22962281
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Suppression of the vapor-liquid-solid growth of silicon nanowires by antimony addition.
    Nimmatoori P; Zhang Q; Dickey EC; Redwing JM
    Nanotechnology; 2009 Jan; 20(2):025607. PubMed ID: 19417276
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-Catalyzed Vapor-Liquid-Solid Growth of Lead Halide Nanowires and Conversion to Hybrid Perovskites.
    Meyers JK; Kim S; Hill DJ; Cating EEM; Williams LJ; Kumbhar AS; McBride JR; Papanikolas JM; Cahoon JF
    Nano Lett; 2017 Dec; 17(12):7561-7568. PubMed ID: 29111750
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic modeling of interfacial abruptness in axial nanowire heterostructures.
    Leshchenko ED; Dubrovskii VG
    Nanotechnology; 2022 Nov; 34(6):. PubMed ID: 36356307
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vapor-liquid-solid and vapor-solid growth of phase-change Sb2Te3 nanowires and Sb2Te3/GeTe nanowire heterostructures.
    Lee JS; Brittman S; Yu D; Park H
    J Am Chem Soc; 2008 May; 130(19):6252-8. PubMed ID: 18402451
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monolayer contact doping of silicon surfaces and nanowires using organophosphorus compounds.
    Hazut O; Agarwala A; Subramani T; Waichman S; Yerushalmi R
    J Vis Exp; 2013 Dec; (82):50770. PubMed ID: 24326774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.