These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 25363730)

  • 41. Site-controlled VLS growth of planar nanowires: yield and mechanism.
    Zhang C; Miao X; Mohseni PK; Choi W; Li X
    Nano Lett; 2014 Dec; 14(12):6836-41. PubMed ID: 25343224
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthesis and electrical characterization of intrinsic and in situ doped Si nanowires using a novel precursor.
    Molnar W; Lugstein A; Wojcik T; Pongratz P; Auner N; Bauch C; Bertagnolli E
    Beilstein J Nanotechnol; 2012; 3():564-9. PubMed ID: 23019552
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Growth of axial SiGe heterostructures in nanowires using pulsed laser deposition.
    Eisenhawer B; Sivakov V; Berger A; Christiansen S
    Nanotechnology; 2011 Jul; 22(30):305604. PubMed ID: 21705828
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Uniform phosphorus doping of untapered germanium nanowires.
    Guilloy K; Pauc N; Gentile P; Robin E; Calvo V
    Nanotechnology; 2016 Dec; 27(48):485701. PubMed ID: 27796273
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Correlated Chemical and Electrically Active Dopant Analysis in Catalyst-Free Si-Doped InAs Nanowires.
    Becker J; Hill MO; Sonner M; Treu J; Döblinger M; Hirler A; Riedl H; Finley JJ; Lauhon L; Koblmüller G
    ACS Nano; 2018 Feb; 12(2):1603-1610. PubMed ID: 29385327
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Growth of SiO(x) nanowires by laser ablation.
    Aharonovich I; Tamir S; Lifshitz Y
    Nanotechnology; 2008 Feb; 19(6):065608. PubMed ID: 21730706
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Gold-catalyzed vapor-liquid-solid germanium-nanowire nucleation on porous silicon.
    Koto M; Marshall AF; Goldthorpe IA; McIntyre PC
    Small; 2010 May; 6(9):1032-7. PubMed ID: 20411571
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Propagation of amorphous oxide nanowires
    Shakthivel D; Navaraj WT; Champet S; Gregory DH; Dahiya RS
    Nanoscale Adv; 2019 Sep; 1(9):3568-3578. PubMed ID: 36133567
    [TBL] [Abstract][Full Text] [Related]  

  • 49. General control of transition-metal-doped GaN nanowire growth: toward understanding the mechanism of dopant incorporation.
    Stamplecoskie KG; Ju L; Farvid SS; Radovanovic PV
    Nano Lett; 2008 Sep; 8(9):2674-81. PubMed ID: 18683987
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Diameter dependent growth rate and interfacial abruptness in vapor-liquid-solid Si/Si1-xGex heterostructure nanowires.
    Clark TE; Nimmatoori P; Lew KK; Pan L; Redwing JM; Dickey EC
    Nano Lett; 2008 Apr; 8(4):1246-52. PubMed ID: 18321076
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Growth, defect formation, and morphology control of germanium-silicon semiconductor nanowire heterostructures.
    Dayeh SA; Wang J; Li N; Huang JY; Gin AV; Picraux ST
    Nano Lett; 2011 Oct; 11(10):4200-6. PubMed ID: 21877708
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Gold catalyzed nickel disilicide formation: a new solid-liquid-solid phase growth mechanism.
    Tang W; Picraux ST; Huang JY; Liu X; Tu KN; Dayeh SA
    Nano Lett; 2013; 13(12):6009-15. PubMed ID: 24274698
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Polarity Control in Growing Highly Ga-Doped ZnO Nanowires with the Vapor-Liquid-Solid Process.
    Yao YF; Chou KP; Lin HH; Chen CC; Kiang YW; Yang CC
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40764-40772. PubMed ID: 30398848
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In situ doping of catalyst-free InAs nanowires.
    Ghoneim H; Mensch P; Schmid H; Bessire CD; Rhyner R; Schenk A; Rettner C; Karg S; Moselund KE; Riel H; Björk MT
    Nanotechnology; 2012 Dec; 23(50):505708. PubMed ID: 23187068
    [TBL] [Abstract][Full Text] [Related]  

  • 55. III-V semiconductor nanowire growth: does arsenic diffuse through the metal nanoparticle catalyst?
    Tizei LH; Chiaramonte T; Ugarte D; Cotta MA
    Nanotechnology; 2009 Jul; 20(27):275604. PubMed ID: 19531855
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Device fabrication with solid-liquid-solid grown silicon nanowires.
    Lee EK; Choi BL; Park YD; Kuk Y; Kwon SY; Kim HJ
    Nanotechnology; 2008 May; 19(18):185701. PubMed ID: 21825697
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modulation of thermoelectric power factor via radial dopant inhomogeneity in B-doped Si nanowires.
    Zhuge F; Yanagida T; Fukata N; Uchida K; Kanai M; Nagashima K; Meng G; He Y; Rahong S; Li X; Kawai T
    J Am Chem Soc; 2014 Oct; 136(40):14100-6. PubMed ID: 25229842
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Extended vapor-liquid-solid growth of silicon carbide nanowires.
    Rajesh JA; Pandurangan A
    J Nanosci Nanotechnol; 2014 Apr; 14(4):2741-51. PubMed ID: 24734687
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Step-flow kinetics model for the vapor-solid-solid Si nanowires growth.
    Cui H; Lü YY; Yang GW; Chen YM; Wang CX
    Nano Lett; 2015 May; 15(5):3640-5. PubMed ID: 25928836
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Direct observation of nanoscale size effects in Ge semiconductor nanowire growth.
    Dayeh SA; Picraux ST
    Nano Lett; 2010 Oct; 10(10):4032-9. PubMed ID: 20853864
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.