These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 25364029)

  • 1. Light-driven water oxidation for solar fuels.
    Young KJ; Martini LA; Milot RL; Snoeberger RC; Batista VS; Schmuttenmaer CA; Crabtree RH; Brudvig GW
    Coord Chem Rev; 2012 Nov; 256(21-22):2503-2520. PubMed ID: 25364029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.
    Hammarström L
    Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances and recent trends in heterogeneous photo(electro)-catalysis for solar fuels and chemicals.
    Highfield J
    Molecules; 2015 Apr; 20(4):6739-93. PubMed ID: 25884553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dye-sensitized photoelectrochemical water oxidation through a buried junction.
    Xu P; Huang T; Huang J; Yan Y; Mallouk TE
    Proc Natl Acad Sci U S A; 2018 Jul; 115(27):6946-6951. PubMed ID: 29915092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solar water splitting in a molecular photoelectrochemical cell.
    Alibabaei L; Brennaman MK; Norris MR; Kalanyan B; Song W; Losego MD; Concepcion JJ; Binstead RA; Parsons GN; Meyer TJ
    Proc Natl Acad Sci U S A; 2013 Dec; 110(50):20008-13. PubMed ID: 24277806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron injection dynamics in high-potential porphyrin photoanodes.
    Milot RL; Schmuttenmaer CA
    Acc Chem Res; 2015 May; 48(5):1423-31. PubMed ID: 25938858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water splitting on semiconductor catalysts under visible-light irradiation.
    Navarro Yerga RM; Alvarez Galván MC; del Valle F; Villoria de la Mano JA; Fierro JL
    ChemSusChem; 2009; 2(6):471-85. PubMed ID: 19536754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organic Semiconductors as Photoanodes for Solar-driven Photoelectrochemical Fuel Production.
    Sekar A; Sivula K
    Chimia (Aarau); 2021 Mar; 75(3):169-179. PubMed ID: 33766199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beyond Water Oxidation: Hybrid, Molecular-Based Photoanodes for the Production of Value-Added Organics.
    Natali M; Sartorel A; Ruggi A
    Front Chem; 2022; 10():907510. PubMed ID: 35692692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visible-Light-Responsive Photoanodes for Highly Active, Stable Water Oxidation.
    Seo J; Nishiyama H; Yamada T; Domen K
    Angew Chem Int Ed Engl; 2018 Jul; 57(28):8396-8415. PubMed ID: 29265720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Making oxygen with ruthenium complexes.
    Concepcion JJ; Jurss JW; Brennaman MK; Hoertz PG; Patrocinio AO; Murakami Iha NY; Templeton JL; Meyer TJ
    Acc Chem Res; 2009 Dec; 42(12):1954-65. PubMed ID: 19817345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finding the Way to Solar Fuels with Dye-Sensitized Photoelectrosynthesis Cells.
    Brennaman MK; Dillon RJ; Alibabaei L; Gish MK; Dares CJ; Ashford DL; House RL; Meyer GJ; Papanikolas JM; Meyer TJ
    J Am Chem Soc; 2016 Oct; 138(40):13085-13102. PubMed ID: 27654634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocatalytic H
    Huang JF; Lei Y; Luo T; Liu JM
    ChemSusChem; 2020 Nov; 13(22):5863-5895. PubMed ID: 32897637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of cocatalysts in photocatalysis and photoelectrocatalysis.
    Yang J; Wang D; Han H; Li C
    Acc Chem Res; 2013 Aug; 46(8):1900-9. PubMed ID: 23530781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Advances in Self-Supported Semiconductor Heterojunction Nanoarrays as Efficient Photoanodes for Photoelectrochemical Water Splitting.
    Liu J; Luo Z; Mao X; Dong Y; Peng L; Sun-Waterhouse D; Kennedy JV; Waterhouse GIN
    Small; 2022 Dec; 18(48):e2204553. PubMed ID: 36135974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances in the Development of Molecular Catalyst-Based Anodes for Water Oxidation toward Artificial Photosynthesis.
    Zahran ZN; Tsubonouchi Y; Mohamed EA; Yagi M
    ChemSusChem; 2019 May; 12(9):1775-1793. PubMed ID: 30793506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water Splitting on Rutile TiO
    Miyoshi A; Nishioka S; Maeda K
    Chemistry; 2018 Dec; 24(69):18204-18219. PubMed ID: 29570871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advancing the Chemistry of CuWO4 for Photoelectrochemical Water Oxidation.
    Lhermitte CR; Bartlett BM
    Acc Chem Res; 2016 Jun; 49(6):1121-9. PubMed ID: 27227377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.