These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 25364286)

  • 41. Role of DNA methylation and the DNA methyltransferases in learning and memory.
    Morris MJ; Monteggia LM
    Dialogues Clin Neurosci; 2014 Sep; 16(3):359-71. PubMed ID: 25364286
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Neuronal DNA Methyltransferases: Epigenetic Mediators between Synaptic Activity and Gene Expression?
    Bayraktar G; Kreutz MR
    Neuroscientist; 2018 Apr; 24(2):171-185. PubMed ID: 28513272
    [TBL] [Abstract][Full Text] [Related]  

  • 43. On the potential role of active DNA demethylation in establishing epigenetic states associated with neural plasticity and memory.
    Li X; Wei W; Ratnu VS; Bredy TW
    Neurobiol Learn Mem; 2013 Oct; 105():125-32. PubMed ID: 23806749
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamic DNA methylation controls glutamate receptor trafficking and synaptic scaling.
    Sweatt JD
    J Neurochem; 2016 May; 137(3):312-30. PubMed ID: 26849493
    [TBL] [Abstract][Full Text] [Related]  

  • 45. DNA methylation-mediated control of learning and memory.
    Yu NK; Baek SH; Kaang BK
    Mol Brain; 2011 Jan; 4():5. PubMed ID: 21247469
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Suppression of DNA Double-Strand Break Formation by DNA Polymerase β in Active DNA Demethylation Is Required for Development of Hippocampal Pyramidal Neurons.
    Uyeda A; Onishi K; Hirayama T; Hattori S; Miyakawa T; Yagi T; Yamamoto N; Sugo N
    J Neurosci; 2020 Nov; 40(47):9012-9027. PubMed ID: 33087478
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Learning induced epigenetic modifications in the ventral striatum are necessary for long-term memory.
    Gaglio D; Capitano F; Mastrodonato A; Minicocci E; Deiana C; Fragapane P; Camilloni G; Mele A
    Behav Brain Res; 2014 May; 265():61-8. PubMed ID: 24525423
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Epigenetics of memory and plasticity.
    Woldemichael BT; Bohacek J; Gapp K; Mansuy IM
    Prog Mol Biol Transl Sci; 2014; 122():305-40. PubMed ID: 24484706
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transcriptional and epigenetic regulation of Hebbian and non-Hebbian plasticity.
    Guzman-Karlsson MC; Meadows JP; Gavin CF; Hablitz JJ; Sweatt JD
    Neuropharmacology; 2014 May; 80():3-17. PubMed ID: 24418102
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain.
    Guo JU; Su Y; Shin JH; Shin J; Li H; Xie B; Zhong C; Hu S; Le T; Fan G; Zhu H; Chang Q; Gao Y; Ming GL; Song H
    Nat Neurosci; 2014 Feb; 17(2):215-22. PubMed ID: 24362762
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Somatic cells regulate maternal mRNA translation and developmental competence of mouse oocytes.
    Chen J; Torcia S; Xie F; Lin CJ; Cakmak H; Franciosi F; Horner K; Onodera C; Song JS; Cedars MI; Ramalho-Santos M; Conti M
    Nat Cell Biol; 2013 Dec; 15(12):1415-23. PubMed ID: 24270888
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chromatin regulators of neural development.
    Tyssowski K; Kishi Y; Gotoh Y
    Neuroscience; 2014 Apr; 264():4-16. PubMed ID: 24144622
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tet1 is critical for neuronal activity-regulated gene expression and memory extinction.
    Rudenko A; Dawlaty MM; Seo J; Cheng AW; Meng J; Le T; Faull KF; Jaenisch R; Tsai LH
    Neuron; 2013 Sep; 79(6):1109-1122. PubMed ID: 24050401
    [TBL] [Abstract][Full Text] [Related]  

  • 54. TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation.
    Kaas GA; Zhong C; Eason DE; Ross DL; Vachhani RV; Ming GL; King JR; Song H; Sweatt JD
    Neuron; 2013 Sep; 79(6):1086-93. PubMed ID: 24050399
    [TBL] [Abstract][Full Text] [Related]  

  • 55. TET enzymatic oxidation of 5-methylcytosine, 5-hydroxymethylcytosine and 5-formylcytosine.
    Cadet J; Wagner JR
    Mutat Res Genet Toxicol Environ Mutagen; 2014 Apr; 764-765():18-35. PubMed ID: 24045206
    [TBL] [Abstract][Full Text] [Related]  

  • 56.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 57.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 58.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 59.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.