These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 25364799)
1. Functionalization of robust Zr(IV)-based metal-organic framework films via a postsynthetic ligand exchange. Fei H; Pullen S; Wagner A; Ott S; Cohen SM Chem Commun (Camb); 2015 Jan; 51(1):66-9. PubMed ID: 25364799 [TBL] [Abstract][Full Text] [Related]
2. A generic and facile strategy to fabricate metal-organic framework films on TiO Yang H; Fei H Dalton Trans; 2017 Feb; 46(9):2751-2755. PubMed ID: 28180231 [TBL] [Abstract][Full Text] [Related]
3. Metalation of a thiocatechol-functionalized Zr(IV)-based metal-organic framework for selective C-H functionalization. Fei H; Cohen SM J Am Chem Soc; 2015 Feb; 137(6):2191-4. PubMed ID: 25650584 [TBL] [Abstract][Full Text] [Related]
4. Reusable oxidation catalysis using metal-monocatecholato species in a robust metal-organic framework. Fei H; Shin J; Meng YS; Adelhardt M; Sutter J; Meyer K; Cohen SM J Am Chem Soc; 2014 Apr; 136(13):4965-73. PubMed ID: 24597832 [TBL] [Abstract][Full Text] [Related]
5. Postsynthetic metalation of bipyridyl-containing metal-organic frameworks for highly efficient catalytic organic transformations. Manna K; Zhang T; Lin W J Am Chem Soc; 2014 May; 136(18):6566-9. PubMed ID: 24758529 [TBL] [Abstract][Full Text] [Related]
6. Room temperature aqueous synthesis of UiO-66 derivatives via postsynthetic exchange. Kalaj M; Prosser KE; Cohen SM Dalton Trans; 2020 Jul; 49(26):8841-8845. PubMed ID: 32582894 [TBL] [Abstract][Full Text] [Related]
7. Postsynthetic ligand and cation exchange in robust metal-organic frameworks. Kim M; Cahill JF; Fei H; Prather KA; Cohen SM J Am Chem Soc; 2012 Oct; 134(43):18082-8. PubMed ID: 23039827 [TBL] [Abstract][Full Text] [Related]
8. Combination of Optimization and Metalated-Ligand Exchange: An Effective Approach to Functionalize UiO-66(Zr) MOFs for CO2 Separation. Hu Z; Faucher S; Zhuo Y; Sun Y; Wang S; Zhao D Chemistry; 2015 Nov; 21(48):17246-55. PubMed ID: 26477589 [TBL] [Abstract][Full Text] [Related]
9. Salicylaldimine-based metal-organic framework enabling highly active olefin hydrogenation with iron and cobalt catalysts. Manna K; Zhang T; Carboni M; Abney CW; Lin W J Am Chem Soc; 2014 Sep; 136(38):13182-5. PubMed ID: 25187995 [TBL] [Abstract][Full Text] [Related]
10. Enhanced photochemical hydrogen production by a molecular diiron catalyst incorporated into a metal-organic framework. Pullen S; Fei H; Orthaber A; Cohen SM; Ott S J Am Chem Soc; 2013 Nov; 135(45):16997-7003. PubMed ID: 24116734 [TBL] [Abstract][Full Text] [Related]
11. [FeFe] Hydrogenase active site model chemistry in a UiO-66 metal-organic framework. Pullen S; Roy S; Ott S Chem Commun (Camb); 2017 May; 53(37):5227-5230. PubMed ID: 28443863 [TBL] [Abstract][Full Text] [Related]
12. Co-immobilization of a Rh Catalyst and a Keggin Polyoxometalate in the UiO-67 Zr-Based Metal-Organic Framework: In Depth Structural Characterization and Photocatalytic Properties for CO Benseghir Y; Lemarchand A; Duguet M; Mialane P; Gomez-Mingot M; Roch-Marchal C; Pino T; Ha-Thi MH; Haouas M; Fontecave M; Dolbecq A; Sassoye C; Mellot-Draznieks C J Am Chem Soc; 2020 May; 142(20):9428-9438. PubMed ID: 32378888 [TBL] [Abstract][Full Text] [Related]
13. Superprotonic conductivity of a UiO-66 framework functionalized with sulfonic acid groups by facile postsynthetic oxidation. Phang WJ; Jo H; Lee WR; Song JH; Yoo K; Kim B; Hong CS Angew Chem Int Ed Engl; 2015 Apr; 54(17):5142-6. PubMed ID: 25726943 [TBL] [Abstract][Full Text] [Related]
14. Lanthanides post-functionalized nanocrystalline metal-organic frameworks for tunable white-light emission and orthogonal multi-readout thermometry. Zhou Y; Yan B Nanoscale; 2015 Mar; 7(9):4063-9. PubMed ID: 25660360 [TBL] [Abstract][Full Text] [Related]
15. Aldehyde-Tagged Zirconium Metal-Organic Frameworks: a Versatile Platform for Postsynthetic Modification. Xi FG; Liu H; Yang NN; Gao EQ Inorg Chem; 2016 May; 55(10):4701-3. PubMed ID: 27136395 [TBL] [Abstract][Full Text] [Related]
16. Interactions of NO2 with Zr-based MOF: effects of the size of organic linkers on NO2 adsorption at ambient conditions. Ebrahim AM; Levasseur B; Bandosz TJ Langmuir; 2013 Jan; 29(1):168-74. PubMed ID: 23249274 [TBL] [Abstract][Full Text] [Related]
17. Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metal-organic framework under visible light irradiation. Lee Y; Kim S; Kang JK; Cohen SM Chem Commun (Camb); 2015 Apr; 51(26):5735-8. PubMed ID: 25719864 [TBL] [Abstract][Full Text] [Related]
18. Photoinduced postsynthetic polymerization of a metal-organic framework toward a flexible stand-alone membrane. Zhang Y; Feng X; Li H; Chen Y; Zhao J; Wang S; Wang L; Wang B Angew Chem Int Ed Engl; 2015 Mar; 54(14):4259-63. PubMed ID: 25736697 [TBL] [Abstract][Full Text] [Related]
19. Orthogonal Ternary Functionalization of a Mesoporous Metal-Organic Framework via Sequential Postsynthetic Ligand Exchange. Liu C; Luo TY; Feura ES; Zhang C; Rosi NL J Am Chem Soc; 2015 Aug; 137(33):10508-11. PubMed ID: 26256310 [TBL] [Abstract][Full Text] [Related]
20. A metal-organic framework containing unusual eight-connected Zr-oxo secondary building units and orthogonal carboxylic acids for ultra-sensitive metal detection. Carboni M; Lin Z; Abney CW; Zhang T; Lin W Chemistry; 2014 Nov; 20(46):14965-70. PubMed ID: 25294005 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]