These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 25364850)
1. Orthotropic active strain models for the numerical simulation of cardiac biomechanics. Rossi S; Ruiz-Baier R; Pavarino LF; Quarteroni A Int J Numer Method Biomed Eng; 2012; 28(6-7):761-88. PubMed ID: 25364850 [TBL] [Abstract][Full Text] [Related]
2. Mathematical modelling of active contraction in isolated cardiomyocytes. Ruiz-Baier R; Gizzi A; Rossi S; Cherubini C; Laadhari A; Filippi S; Quarteroni A Math Med Biol; 2014 Sep; 31(3):259-83. PubMed ID: 23760444 [TBL] [Abstract][Full Text] [Related]
3. An anatomical heart model with applications to myocardial activation and ventricular mechanics. Hunter PJ; Nielsen PM; Smaill BH; LeGrice IJ; Hunter IW Crit Rev Biomed Eng; 1992; 20(5-6):403-26. PubMed ID: 1486783 [TBL] [Abstract][Full Text] [Related]
4. An active strain electromechanical model for cardiac tissue. Nobile F; Quarteroni A; Ruiz-Baier R Int J Numer Method Biomed Eng; 2012 Jan; 28(1):52-71. PubMed ID: 25830205 [TBL] [Abstract][Full Text] [Related]
5. An orthotropic viscoelastic model for the passive myocardium: continuum basis and numerical treatment. Gültekin O; Sommer G; Holzapfel GA Comput Methods Biomech Biomed Engin; 2016 Nov; 19(15):1647-64. PubMed ID: 27146848 [TBL] [Abstract][Full Text] [Related]
6. A high-resolution computational model of the deforming human heart. Gurev V; Pathmanathan P; Fattebert JL; Wen HF; Magerlein J; Gray RA; Richards DF; Rice JJ Biomech Model Mechanobiol; 2015 Aug; 14(4):829-49. PubMed ID: 25567753 [TBL] [Abstract][Full Text] [Related]
7. An orthotropic viscoelastic material model for passive myocardium: theory and algorithmic treatment. Cansız FB; Dal H; Kaliske M Comput Methods Biomech Biomed Engin; 2015 Aug; 18(11):1160-1172. PubMed ID: 24533658 [TBL] [Abstract][Full Text] [Related]
8. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes. Spilker RL; de Almeida ES; Donzelli PS Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094 [TBL] [Abstract][Full Text] [Related]
9. A monolithic 3D-0D coupled closed-loop model of the heart and the vascular system: Experiment-based parameter estimation for patient-specific cardiac mechanics. Hirschvogel M; Bassilious M; Jagschies L; Wildhirt SM; Gee MW Int J Numer Method Biomed Eng; 2017 Aug; 33(8):e2842. PubMed ID: 27743468 [TBL] [Abstract][Full Text] [Related]
10. A mixed finite element formulation for a non-linear, transversely isotropic material model for the cardiac tissue. Thorvaldsen T; Osnes H; Sundnes J Comput Methods Biomech Biomed Engin; 2005 Dec; 8(6):369-79. PubMed ID: 16393874 [TBL] [Abstract][Full Text] [Related]
11. A transmurally heterogeneous orthotropic activation model for ventricular contraction and its numerical validation. Barbarotta L; Rossi S; Dedè L; Quarteroni A Int J Numer Method Biomed Eng; 2018 Dec; 34(12):e3137. PubMed ID: 30070071 [TBL] [Abstract][Full Text] [Related]
12. An integrated formulation of anisotropic force-calcium relations driving spatio-temporal contractions of cardiac myocytes. Tracqui P; Ohayon J Philos Trans A Math Phys Eng Sci; 2009 Dec; 367(1908):4887-905. PubMed ID: 19884185 [TBL] [Abstract][Full Text] [Related]
13. Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes. Einstein DR; Reinhall P; Nicosia M; Cochran RP; Kunzelman K Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):33-44. PubMed ID: 12623436 [TBL] [Abstract][Full Text] [Related]
14. A large-strain finite element formulation for biological tissues with application to mitral valve leaflet tissue mechanics. Weinberg EJ; Kaazempur-Mofrad MR J Biomech; 2006; 39(8):1557-61. PubMed ID: 16038913 [TBL] [Abstract][Full Text] [Related]
15. A finite-element model for the mechanical analysis of skeletal muscles. Johansson T; Meier P; Blickhan R J Theor Biol; 2000 Sep; 206(1):131-49. PubMed ID: 10968943 [TBL] [Abstract][Full Text] [Related]
16. Myocardial material parameter estimation: a comparison of invariant based orthotropic constitutive equations. Schmid H; Wang YK; Ashton J; Ehret AE; Krittian SB; Nash MP; Hunter PJ Comput Methods Biomech Biomed Engin; 2009 Jun; 12(3):283-95. PubMed ID: 19089682 [TBL] [Abstract][Full Text] [Related]
17. Adaptation of a rabbit myocardium material model for use in a canine left ventricle simulation study. Doyle MG; Tavoularis S; Bourgault Y J Biomech Eng; 2010 Apr; 132(4):041006. PubMed ID: 20387969 [TBL] [Abstract][Full Text] [Related]
18. Towards an orientation-distribution-based multi-scale approach for remodelling biological tissues. Menzel A; Harrysson M; Ristinmaa M Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):505-24. PubMed ID: 19230147 [TBL] [Abstract][Full Text] [Related]
19. A projection method to extract biological membrane models from 3D material models. Roohbakhshan F; Duong TX; Sauer RA J Mech Behav Biomed Mater; 2016 May; 58():90-104. PubMed ID: 26455810 [TBL] [Abstract][Full Text] [Related]
20. An orthotropic electro-viscoelastic model for the heart with stress-assisted diffusion. Propp A; Gizzi A; Levrero-Florencio F; Ruiz-Baier R Biomech Model Mechanobiol; 2020 Apr; 19(2):633-659. PubMed ID: 31630280 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]