These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 25364851)

  • 1. Evolutionary design of bone scaffolds with reference to material selection.
    Heljak MK; Swięszkowski W; Lam CX; Hutmacher DW; Kurzydłowski KJ
    Int J Numer Method Biomed Eng; 2012; 28(6-7):789-800. PubMed ID: 25364851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity.
    Lin CY; Kikuchi N; Hollister SJ
    J Biomech; 2004 May; 37(5):623-36. PubMed ID: 15046991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of scaffold design for bone tissue engineering: A computational and experimental study.
    Dias MR; Guedes JM; Flanagan CL; Hollister SJ; Fernandes PR
    Med Eng Phys; 2014 Apr; 36(4):448-57. PubMed ID: 24636449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer aided design of architecture of degradable tissue engineering scaffolds.
    Heljak MK; Kurzydlowski KJ; Swieszkowski W
    Comput Methods Biomech Biomed Engin; 2017 Nov; 20(15):1623-1632. PubMed ID: 29106807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The development of computer-aided system for tissue scaffolds (CASTS) system for functionally graded tissue-engineering scaffolds.
    Sudarmadji N; Chua CK; Leong KF
    Methods Mol Biol; 2012; 868():111-23. PubMed ID: 22692607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering.
    Wang J; Yu X
    Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of individual scaffolds based on a patient-specific alveolar bone defect model.
    Li J; Zhang L; Lv S; Li S; Wang N; Zhang Z
    J Biotechnol; 2011 Jan; 151(1):87-93. PubMed ID: 21056602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study.
    Truscello S; Kerckhofs G; Van Bael S; Pyka G; Schrooten J; Van Oosterwyck H
    Acta Biomater; 2012 Apr; 8(4):1648-58. PubMed ID: 22210520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical modeling in the design and evaluation of scaffolds for orthopaedics applications.
    Swieszkowski W; Kurzydlowski KJ
    Methods Mol Biol; 2012; 868():155-82. PubMed ID: 22692611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of Bone Scaffold Porosity Distributions.
    Poh PSP; Valainis D; Bhattacharya K; van Griensven M; Dondl P
    Sci Rep; 2019 Jun; 9(1):9170. PubMed ID: 31235704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of fluid shear stress in bone tissue engineering scaffolds with spherical and cubical pore architectures.
    Zhao F; Vaughan TJ; McNamara LM
    Biomech Model Mechanobiol; 2016 Jun; 15(3):561-77. PubMed ID: 26224148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering.
    Xu M; Li Y; Suo H; Yan Y; Liu L; Wang Q; Ge Y; Xu Y
    Biofabrication; 2010 Jun; 2(2):025002. PubMed ID: 20811130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering.
    Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X
    J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds.
    Sudarmadji N; Tan JY; Leong KF; Chua CK; Loh YT
    Acta Biomater; 2011 Feb; 7(2):530-7. PubMed ID: 20883840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On stiffness of scaffolds for bone tissue engineering-a numerical study.
    Sturm S; Zhou S; Mai YW; Li Q
    J Biomech; 2010 Jun; 43(9):1738-44. PubMed ID: 20227080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineered tissue scaffolds with variational porous architecture.
    Khoda AK; Ozbolat IT; Koc B
    J Biomech Eng; 2011 Jan; 133(1):011001. PubMed ID: 21186891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering.
    Yeong WY; Sudarmadji N; Yu HY; Chua CK; Leong KF; Venkatraman SS; Boey YC; Tan LP
    Acta Biomater; 2010 Jun; 6(6):2028-34. PubMed ID: 20026436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical and experimental evaluation of TPMS Gyroid scaffolds for bone tissue engineering.
    Castro APG; Ruben RB; Gonçalves SB; Pinheiro J; Guedes JM; Fernandes PR
    Comput Methods Biomech Biomed Engin; 2019 May; 22(6):567-573. PubMed ID: 30773050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of tissue engineering scaffolds based on hyperbolic surfaces: structural numerical evaluation.
    Almeida HA; Bártolo PJ
    Med Eng Phys; 2014 Aug; 36(8):1033-40. PubMed ID: 24935150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic Boundary-Based Scaffold Design for Tissue Engineering Applications.
    Almeida HA; Bártolo PJ
    Methods Mol Biol; 2021; 2147():3-18. PubMed ID: 32840806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.