These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 25365141)

  • 1. All inorganic semiconductor nanowire mesh for direct solar water splitting.
    Liu B; Wu CH; Miao J; Yang P
    ACS Nano; 2014 Nov; 8(11):11739-44. PubMed ID: 25365141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achieving solar overall water splitting with hybrid photosystems of photosystem II and artificial photocatalysts.
    Wang W; Chen J; Li C; Tian W
    Nat Commun; 2014 Aug; 5():4647. PubMed ID: 25115942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L
    Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solar-to-Chemical Energy Conversion with Photoelectrochemical Tandem Cells.
    Sivula K
    Chimia (Aarau); 2013; 67(3):155-61. PubMed ID: 23574955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting.
    Liu C; Tang J; Chen HM; Liu B; Yang P
    Nano Lett; 2013 Jun; 13(6):2989-92. PubMed ID: 23647159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts.
    Wen F; Li C
    Acc Chem Res; 2013 Nov; 46(11):2355-64. PubMed ID: 23730891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system.
    Walczak K; Chen Y; Karp C; Beeman JW; Shaner M; Spurgeon J; Sharp ID; Amashukeli X; West W; Jin J; Lewis NS; Xiang C
    ChemSusChem; 2015 Feb; 8(3):544-51. PubMed ID: 25581231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid bioinorganic approach to solar-to-chemical conversion.
    Nichols EM; Gallagher JJ; Liu C; Su Y; Resasco J; Yu Y; Sun Y; Yang P; Chang MC; Chang CJ
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):11461-6. PubMed ID: 26305947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals.
    Liu C; Gallagher JJ; Sakimoto KK; Nichols EM; Chang CJ; Chang MC; Yang P
    Nano Lett; 2015 May; 15(5):3634-9. PubMed ID: 25848808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solar-Driven CO
    Morikawa T; Sato S; Sekizawa K; Suzuki TM; Arai T
    Acc Chem Res; 2022 Apr; 55(7):933-943. PubMed ID: 34851099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unassisted Photoelectrochemical Cell with Multimediator Modulation for Solar Water Splitting Exceeding 4% Solar-to-Hydrogen Efficiency.
    Ye S; Shi W; Liu Y; Li D; Yin H; Chi H; Luo Y; Ta N; Fan F; Wang X; Li C
    J Am Chem Soc; 2021 Aug; 143(32):12499-12508. PubMed ID: 34343431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mimicking the Key Functions of Photosystem II in Artificial Photosynthesis for Photoelectrocatalytic Water Splitting.
    Ye S; Ding C; Chen R; Fan F; Fu P; Yin H; Wang X; Wang Z; Du P; Li C
    J Am Chem Soc; 2018 Mar; 140(9):3250-3256. PubMed ID: 29338218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water splitting on semiconductor catalysts under visible-light irradiation.
    Navarro Yerga RM; Alvarez Galván MC; del Valle F; Villoria de la Mano JA; Fierro JL
    ChemSusChem; 2009; 2(6):471-85. PubMed ID: 19536754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial Photosynthesis at Efficiencies Greatly Exceeding That of Natural Photosynthesis.
    Dogutan DK; Nocera DG
    Acc Chem Res; 2019 Nov; 52(11):3143-3148. PubMed ID: 31593438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocatalytic photosynthesis with water as an electron donor.
    Ryu J; Nam DH; Lee SH; Park CB
    Chemistry; 2014 Sep; 20(38):12020-5. PubMed ID: 25088448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable quantum dot photoelectrolysis cell for unassisted visible light solar water splitting.
    Yang HB; Miao J; Hung SF; Huo F; Chen HM; Liu B
    ACS Nano; 2014 Oct; 8(10):10403-13. PubMed ID: 25268880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H2 generation.
    Sun K; Jing Y; Li C; Zhang X; Aguinaldo R; Kargar A; Madsen K; Banu K; Zhou Y; Bando Y; Liu Z; Wang D
    Nanoscale; 2012 Mar; 4(5):1515-21. PubMed ID: 22322530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooperative Catalytic Effect of ZrO
    Shaddad MN; Ghanem MA; Al-Mayouf AM; Gimenez S; Bisquert J; Herraiz-Cardona I
    ChemSusChem; 2016 Oct; 9(19):2779-2783. PubMed ID: 27585108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.