These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 25365141)

  • 21. Overall photosynthesis of H
    Liu T; Pan Z; Vequizo JJM; Kato K; Wu B; Yamakata A; Katayama K; Chen B; Chu C; Domen K
    Nat Commun; 2022 Feb; 13(1):1034. PubMed ID: 35210427
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite.
    Mayer MT; Lin Y; Yuan G; Wang D
    Acc Chem Res; 2013 Jul; 46(7):1558-66. PubMed ID: 23425045
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tantalum-based semiconductors for solar water splitting.
    Zhang P; Zhang J; Gong J
    Chem Soc Rev; 2014 Jul; 43(13):4395-422. PubMed ID: 24668282
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Iron based photoanodes for solar fuel production.
    Bassi PS; Gurudayal ; Wong LH; Barber J
    Phys Chem Chem Phys; 2014 Jun; 16(24):11834-42. PubMed ID: 24469680
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Colloidal WO(3) nanowires as a versatile route to prepare a photoanode for solar water splitting.
    Gonçalves RH; Leite LD; Leite ER
    ChemSusChem; 2012 Dec; 5(12):2341-7. PubMed ID: 23139181
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Roles of cocatalysts in photocatalysis and photoelectrocatalysis.
    Yang J; Wang D; Han H; Li C
    Acc Chem Res; 2013 Aug; 46(8):1900-9. PubMed ID: 23530781
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solar Water Splitting Using Semiconductor Photocatalyst Powders.
    Takanabe K
    Top Curr Chem; 2016; 371():73-103. PubMed ID: 26134367
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.
    Hammarström L
    Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Water splitting-biosynthetic system with CO₂ reduction efficiencies exceeding photosynthesis.
    Liu C; Colón BC; Ziesack M; Silver PA; Nocera DG
    Science; 2016 Jun; 352(6290):1210-3. PubMed ID: 27257255
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1.
    Wang Q; Hisatomi T; Jia Q; Tokudome H; Zhong M; Wang C; Pan Z; Takata T; Nakabayashi M; Shibata N; Li Y; Sharp ID; Kudo A; Yamada T; Domen K
    Nat Mater; 2016 Jun; 15(6):611-5. PubMed ID: 26950596
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biological components and bioelectronic interfaces of water splitting photoelectrodes for solar hydrogen production.
    Braun A; Boudoire F; Bora DK; Faccio G; Hu Y; Kroll A; Mun BS; Wilson ST
    Chemistry; 2015 Mar; 21(11):4188-99. PubMed ID: 25504590
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coaxial silicon nanowires as solar cells and nanoelectronic power sources.
    Tian B; Zheng X; Kempa TJ; Fang Y; Yu N; Yu G; Huang J; Lieber CM
    Nature; 2007 Oct; 449(7164):885-9. PubMed ID: 17943126
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solar energy for electricity and fuels.
    Inganäs O; Sundström V
    Ambio; 2016 Jan; 45 Suppl 1(Suppl 1):S15-23. PubMed ID: 26667056
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hybrid system of semiconductor and photosynthetic protein.
    Kim Y; Shin SA; Lee J; Yang KD; Nam KT
    Nanotechnology; 2014 Aug; 25(34):342001. PubMed ID: 25091409
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Introductory lecture: systems materials engineering approach for solar-to-chemical conversion.
    Liu C; Yang P
    Faraday Discuss; 2014; 176():9-16. PubMed ID: 25639766
    [TBL] [Abstract][Full Text] [Related]  

  • 36. One-step overall water splitting under visible light using multiband InGaN/GaN nanowire heterostructures.
    Kibria MG; Nguyen HP; Cui K; Zhao S; Liu D; Guo H; Trudeau ML; Paradis S; Hakima AR; Mi Z
    ACS Nano; 2013 Sep; 7(9):7886-93. PubMed ID: 23957654
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unbiased photoelectrochemical water splitting in Z-scheme device using W/Mo-doped BiVO4 and Zn(x)Cd(1-x)Se.
    Park HS; Lee HC; Leonard KC; Liu G; Bard AJ
    Chemphyschem; 2013 Jul; 14(10):2277-87. PubMed ID: 23494937
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural and mechanistic aspects of Mn-oxo and co-based compounds in water oxidation catalysis and potential applications in solar fuel production.
    Hou HJ
    J Integr Plant Biol; 2010 Aug; 52(8):704-11. PubMed ID: 20666926
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Charge Transport in Two-Photon Semiconducting Structures for Solar Fuels.
    Liu G; Du K; Haussener S; Wang K
    ChemSusChem; 2016 Oct; 9(20):2878-2904. PubMed ID: 27624337
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solar-Energy-Driven Photoelectrochemical Biosensing Using TiO2 Nanowires.
    Tang J; Li J; Da P; Wang Y; Zheng G
    Chemistry; 2015 Aug; 21(32):11288-99. PubMed ID: 25962650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.