BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 2536542)

  • 1. Glutathione-mediated redox cycling of alloxan. Mechanisms of superoxide dismutase inhibition and of metal-catalyzed OH. formation.
    Winterbourn CC; Munday R
    Biochem Pharmacol; 1989 Jan; 38(2):271-7. PubMed ID: 2536542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutathione dependent reduction of alloxan to dialuric acid catalyzed by thioltransferase (glutaredoxin): a possible role for thioltransferase in alloxan toxicity.
    Washburn MP; Wells WW
    Free Radic Biol Med; 1997; 23(4):563-70. PubMed ID: 9215802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative importance of cellular uptake and reactive oxygen species for the toxicity of alloxan and dialuric acid to insulin-producing cells.
    Elsner M; Gurgul-Convey E; Lenzen S
    Free Radic Biol Med; 2006 Sep; 41(5):825-34. PubMed ID: 16895803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of autoxidation of divicine and isouramil by the combination of superoxide dismutase and reduced glutathione.
    Winterbourn CC
    Arch Biochem Biophys; 1989 Jun; 271(2):447-55. PubMed ID: 2730000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous quantitative determination of alloxan, GSH and GSSG by HPlc. Estimation of the frequency of redox cycling between alloxan and dialuric acid.
    Brömme HJ; Weinandy R; Peschke D; Peschke E
    Horm Metab Res; 2001 Feb; 33(2):106-9. PubMed ID: 11294491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auto-oxidation of dialuric acid, divicine and isouramil. Superoxide dependent and independent mechanisms.
    Winterbourn CC; Cowden WB; Sutton HC
    Biochem Pharmacol; 1989 Feb; 38(4):611-8. PubMed ID: 2537083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interaction of reduced glutathione with active oxygen species generated by xanthine-oxidase-catalyzed metabolism of xanthine.
    Ross D; Cotgreave I; Moldéus P
    Biochim Biophys Acta; 1985 Sep; 841(3):278-82. PubMed ID: 2992602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concerted action of reduced glutathione and superoxide dismutase in preventing redox cycling of dihydroxypyrimidines, and their role in antioxidant defence.
    Winterbourn CC; Munday R
    Free Radic Res Commun; 1990; 8(4-6):287-93. PubMed ID: 2354807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ascorbate-mediated iron release from ferritin in the presence of alloxan.
    Sakurai K; Nabeyama A; Fujimoto Y
    Biometals; 2006 Jun; 19(3):323-33. PubMed ID: 16799870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiol oxidation coupled to DT-diaphorase-catalysed reduction of diaziquone. Reductive and oxidative pathways of diaziquone semiquinone modulated by glutathione and superoxide dismutase.
    Ordoñez ID; Cadenas E
    Biochem J; 1992 Sep; 286 ( Pt 2)(Pt 2):481-90. PubMed ID: 1530580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutathionyl- and hydroxyl radical formation coupled to the redox transitions of 1,4-naphthoquinone bioreductive alkylating agents during glutathione two-electron reductive addition.
    Goin J; Gibson DD; McCay PB; Cadenas E
    Arch Biochem Biophys; 1991 Aug; 288(2):386-96. PubMed ID: 1654832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dialuric acid autoxidation. Effects of transition metals on the reaction rate and on the generation of "active oxygen" species.
    Munday R
    Biochem Pharmacol; 1988 Feb; 37(3):409-13. PubMed ID: 3337741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro effects of alloxan/copper combinations on lipid peroxidation, protein oxidation and antioxidant enzymes.
    Alexandrova A; Petrov L; Kessiova M; Kirkova M
    Acta Biol Hung; 2007 Dec; 58(4):359-67. PubMed ID: 18277462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A role of iron in lambda DNA strand breaks in the reaction system of alloxan with reduced glutathione: iron(III) binding to the DNA.
    Sakurai K; Haga K; Ogiso T
    Biol Pharm Bull; 1994 Feb; 17(2):227-31. PubMed ID: 8205121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of oxygen concentration on redox cycling of alloxan and dialuric acid.
    Brömme HJ; Weinandy R; Peschke E
    Horm Metab Res; 2005 Dec; 37(12):729-33. PubMed ID: 16372225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of superoxide-dependent oxidation and hydroxylation reactions by nitric oxide.
    Miles AM; Bohle DS; Glassbrenner PA; Hansert B; Wink DA; Grisham MB
    J Biol Chem; 1996 Jan; 271(1):40-7. PubMed ID: 8550595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation of glutathione by the superoxide radical to the disulfide and the sulfonate yielding singlet oxygen.
    Wefers H; Sies H
    Eur J Biochem; 1983 Dec; 137(1-2):29-36. PubMed ID: 6317388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the mechanism of the Mn3(+)-induced neurotoxicity of dopamine:prevention of quinone-derived oxygen toxicity by DT diaphorase and superoxide dismutase.
    Segura-Aguilar J; Lind C
    Chem Biol Interact; 1989; 72(3):309-24. PubMed ID: 2557982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular reduction of alloxan results in oxygen radical-mediated attack on plasma and lysosomal membranes.
    Zhang H; Gao G; Brunk UT
    APMIS; 1992 Apr; 100(4):317-25. PubMed ID: 1581040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alloxan acts as a prooxidant only under reducing conditions: influence of melatonin.
    Brömme HJ; Ebelt H; Peschke D; Peschke E
    Cell Mol Life Sci; 1999 Mar; 55(3):487-93. PubMed ID: 10228562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.