These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 25365451)
1. Arsenic-rich acid mine water with extreme arsenic concentration: mineralogy, geochemistry, microbiology, and environmental implications. Majzlan J; Plášil J; Škoda R; Gescher J; Kögler F; Rusznyak A; Küsel K; Neu TR; Mangold S; Rothe J Environ Sci Technol; 2014 Dec; 48(23):13685-93. PubMed ID: 25365451 [TBL] [Abstract][Full Text] [Related]
2. Arsenic species formed from arsenopyrite weathering along a contamination gradient in Circumneutral river floodplain soils. Mandaliev PN; Mikutta C; Barmettler K; Kotsev T; Kretzschmar R Environ Sci Technol; 2014; 48(1):208-17. PubMed ID: 24283255 [TBL] [Abstract][Full Text] [Related]
3. Hydrogeochemistry of arsenic pollution in watersheds influenced by gold mining activities in Paracatu (Minas Gerais State, Brazil). Bidone E; Castilhos Z; Cesar R; Santos MC; Sierpe R; Ferreira M Environ Sci Pollut Res Int; 2016 May; 23(9):8546-55. PubMed ID: 26797944 [TBL] [Abstract][Full Text] [Related]
4. Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation. Kim EJ; Yoo JC; Baek K Environ Pollut; 2014 Mar; 186():29-35. PubMed ID: 24361561 [TBL] [Abstract][Full Text] [Related]
5. Arsenic behavior in different biogeochemical zonations approximately along the groundwater flow path in Datong Basin, northern China. Zhang J; Ma T; Feng L; Yan Y; Abass OK; Wang Z; Cai H Sci Total Environ; 2017 Apr; 584-585():458-468. PubMed ID: 28185734 [TBL] [Abstract][Full Text] [Related]
6. Natural attenuation of arsenic in soils near a highly contaminated historical mine waste dump. Drahota P; Filippi M; Ettler V; Rohovec J; Mihaljevič M; Sebek O Sci Total Environ; 2012 Jan; 414():546-55. PubMed ID: 22134035 [TBL] [Abstract][Full Text] [Related]
7. Effects of Fe-S-As coupled redox processes on arsenic mobilization in shallow aquifers of Datong Basin, northern China. Zhang J; Ma T; Yan Y; Xie X; Abass OK; Liu C; Zhao Z; Wang Z Environ Pollut; 2018 Jun; 237():28-38. PubMed ID: 29466772 [TBL] [Abstract][Full Text] [Related]
8. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China. Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934 [TBL] [Abstract][Full Text] [Related]
9. The role of cassiterite controlling arsenic mobility in an abandoned stanniferous tailings impoundment at Llallagua, Bolivia. Romero FM; Canet C; Alfonso P; Zambrana RN; Soto N Sci Total Environ; 2014 May; 481():100-7. PubMed ID: 24589759 [TBL] [Abstract][Full Text] [Related]
10. Arsenic and iron removal from groundwater by oxidation-coagulation at optimized pH: laboratory and field studies. Bordoloi S; Nath SK; Gogoi S; Dutta RK J Hazard Mater; 2013 Sep; 260():618-26. PubMed ID: 23827730 [TBL] [Abstract][Full Text] [Related]
11. Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite. Burton ED; Johnston SG; Kraal P; Bush RT; Claff S Environ Sci Technol; 2013 Mar; 47(5):2221-9. PubMed ID: 23373718 [TBL] [Abstract][Full Text] [Related]
12. Occurrence of arsenic in core sediments and groundwater in the Chapai-Nawabganj District, northwestern Bangladesh. Selim Reza AH; Jean JS; Yang HJ; Lee MK; Woodall B; Liu CC; Lee JF; Luo SD Water Res; 2010 Mar; 44(6):2021-37. PubMed ID: 20053416 [TBL] [Abstract][Full Text] [Related]
13. Crossing redox boundaries--aquifer redox history and effects on iron mineralogy and arsenic availability. Banning A; Rüde TR; Dölling B J Hazard Mater; 2013 Nov; 262():905-14. PubMed ID: 23280400 [TBL] [Abstract][Full Text] [Related]
14. Ferric minerals and organic matter change arsenic speciation in copper mine tailings. Wang P; Liu Y; Menzies NW; Wehr JB; de Jonge MD; Howard DL; Kopittke PM; Huang L Environ Pollut; 2016 Nov; 218():835-843. PubMed ID: 27524252 [TBL] [Abstract][Full Text] [Related]
15. XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O(2) via Fe(2+)-mediated reactions. Ona-Nguema G; Morin G; Wang Y; Foster AL; Juillot F; Calas G; Brown GE Environ Sci Technol; 2010 Jul; 44(14):5416-22. PubMed ID: 20666402 [TBL] [Abstract][Full Text] [Related]
16. Removing arsenic from synthetic groundwater with iron electrocoagulation: an Fe and As K-edge EXAFS study. van Genuchten CM; Addy SE; Peña J; Gadgil AJ Environ Sci Technol; 2012 Jan; 46(2):986-94. PubMed ID: 22132945 [TBL] [Abstract][Full Text] [Related]
17. Arsenic mobilization from sediments in microcosms under sulfate reduction. Sun J; Quicksall AN; Chillrud SN; Mailloux BJ; Bostick BC Chemosphere; 2016 Jun; 153():254-61. PubMed ID: 27037658 [TBL] [Abstract][Full Text] [Related]
18. Arsenic release from arsenopyrite weathering: insights from sequential extraction and microscopic studies. Basu A; Schreiber ME J Hazard Mater; 2013 Nov; 262():896-904. PubMed ID: 23312782 [TBL] [Abstract][Full Text] [Related]
19. Microbial effects on the release and attenuation of arsenic in the shallow subsurface of a natural geochemical anomaly. Drahota P; Falteisek L; Redlich A; Rohovec J; Matoušek T; Cepička I Environ Pollut; 2013 Sep; 180():84-91. PubMed ID: 23733013 [TBL] [Abstract][Full Text] [Related]
20. Bacterial formation of tooeleite and mixed arsenic(III) or arsenic(V)-iron(III) gels in the Carnoulès acid mine drainage, France. A XANES, XRD, and SEM study. Morin G; Juillot F; Casiot C; Bruneel O; Personné JC; Elbaz-Poulichet F; Leblanc M; Ildefonse P; Calas G Environ Sci Technol; 2003 May; 37(9):1705-12. PubMed ID: 12775038 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]