These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
423 related articles for article (PubMed ID: 25365601)
1. Spatiotemporal complexity in a predator--prey model with weak Allee effects. Cai Y; Banerjee M; Kang Y; Wang W Math Biosci Eng; 2014 Dec; 11(6):1247-74. PubMed ID: 25365601 [TBL] [Abstract][Full Text] [Related]
2. Turing instabilities and spatio-temporal chaos in ratio-dependent Holling-Tanner model. Banerjee M; Banerjee S Math Biosci; 2012 Mar; 236(1):64-76. PubMed ID: 22207074 [TBL] [Abstract][Full Text] [Related]
3. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Chang X; Wei J Math Biosci Eng; 2013 Aug; 10(4):979-96. PubMed ID: 23906199 [TBL] [Abstract][Full Text] [Related]
4. Global analysis and Hopf-bifurcation in a cross-diffusion prey-predator system with fear effect and predator cannibalism. Ma T; Meng X Math Biosci Eng; 2022 Apr; 19(6):6040-6071. PubMed ID: 35603390 [TBL] [Abstract][Full Text] [Related]
5. Supercritical and subcritical Hopf-bifurcations in a two-delayed prey-predator system with density-dependent mortality of predator and strong Allee effect in prey. Banerjee J; Sasmal SK; Layek RK Biosystems; 2019 Jun; 180():19-37. PubMed ID: 30851345 [TBL] [Abstract][Full Text] [Related]
6. Pattern formation, long-term transients, and the Turing-Hopf bifurcation in a space- and time-discrete predator-prey system. Rodrigues LA; Mistro DC; Petrovskii S Bull Math Biol; 2011 Aug; 73(8):1812-40. PubMed ID: 20972714 [TBL] [Abstract][Full Text] [Related]
7. Spatial pattern formation in ratio-dependent model: higher-order stability analysis. Banerjee M Math Med Biol; 2011 Jun; 28(2):111-28. PubMed ID: 21135088 [TBL] [Abstract][Full Text] [Related]
8. Spatiotemporal dynamics of a diffusive predator-prey model with delay and Allee effect in predator. Liu F; Du Y Math Biosci Eng; 2023 Oct; 20(11):19372-19400. PubMed ID: 38052605 [TBL] [Abstract][Full Text] [Related]
9. Spatiotemporal complexity of a ratio-dependent predator-prey system. Wang W; Liu QX; Jin Z Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051913. PubMed ID: 17677104 [TBL] [Abstract][Full Text] [Related]
10. Existence of traveling wave solutions in a diffusive predator-prey model. Huang J; Lu G; Ruan S J Math Biol; 2003 Feb; 46(2):132-52. PubMed ID: 12567231 [TBL] [Abstract][Full Text] [Related]
11. Instabilities in spatially extended predator-prey systems: spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations. Baurmann M; Gross T; Feudel U J Theor Biol; 2007 Mar; 245(2):220-9. PubMed ID: 17140604 [TBL] [Abstract][Full Text] [Related]
12. Analytical detection of stationary and dynamic patterns in a prey-predator model with reproductive Allee effect in prey growth. Dey S; Ghorai S; Banerjee M J Math Biol; 2023 Jul; 87(1):21. PubMed ID: 37395822 [TBL] [Abstract][Full Text] [Related]
13. A diffusive predator-prey system with prey refuge and predator cannibalism. Zhang YX; Rong XM; Zhang JM Math Biosci Eng; 2019 Feb; 16(3):1445-1470. PubMed ID: 30947428 [TBL] [Abstract][Full Text] [Related]
14. Population dynamic consequences of fearful prey in a spatiotemporal predator-prey system. Upadhyay RK; Mishra S Math Biosci Eng; 2018 Dec; 16(1):338-372. PubMed ID: 30674123 [TBL] [Abstract][Full Text] [Related]
15. Long-time behavior and Turing instability induced by cross-diffusion in a three species food chain model with a Holling type-II functional response. Haile D; Xie Z Math Biosci; 2015 Sep; 267():134-48. PubMed ID: 26192388 [TBL] [Abstract][Full Text] [Related]
16. Multiple limit cycles in a Gause type predator-prey model with Holling type III functional response and Allee effect on prey. González-Olivares E; Rojas-Palma A Bull Math Biol; 2011 Jun; 73(6):1378-97. PubMed ID: 20830610 [TBL] [Abstract][Full Text] [Related]
17. Stability of Hopf-bifurcating limit cycles in a diffusion-driven prey-predator system with Allee effect and time delay. Manna K; Banerjee M Math Biosci Eng; 2019 Mar; 16(4):2411-2446. PubMed ID: 31137220 [TBL] [Abstract][Full Text] [Related]
18. Turing-Hopf Bifurcation Analysis in a Diffusive Ratio-Dependent Predator-Prey Model with Allee Effect and Predator Harvesting. Chen M; Xu Y; Zhao J; Wei X Entropy (Basel); 2023 Dec; 26(1):. PubMed ID: 38248144 [TBL] [Abstract][Full Text] [Related]
19. Turing Instability and Colony Formation in Spatially Extended Rosenzweig-MacArthur Predator-Prey Models with Allochthonous Resources. Zhou Z; Van Gorder RA Bull Math Biol; 2019 Dec; 81(12):5009-5053. PubMed ID: 31595381 [TBL] [Abstract][Full Text] [Related]
20. Dynamics and spatio-temporal patterns in a prey-predator system with aposematic prey. Sasmal SK; Banerjee J; Takeuchi Y Math Biosci Eng; 2019 May; 16(5):3864-3884. PubMed ID: 31499640 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]