These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 25365604)

  • 1. Modeling the impact of twitter on influenza epidemics.
    Pawelek KA; Oeldorf-Hirsch A; Rong L
    Math Biosci Eng; 2014 Dec; 11(6):1337-56. PubMed ID: 25365604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pandemic influenza: Modelling and public health perspectives.
    Arino J; Bauch C; Brauer F; Driedger SM; Greer AL; Moghadas SM; Pizzi NJ; Sander B; Tuite A; van den Driessche P; Watmough J; Wu J; Yan P
    Math Biosci Eng; 2011 Jan; 8(1):1-20. PubMed ID: 21361397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surveillance for influenza--United States, 1997-98, 1998-99, and 1999-00 seasons.
    Brammer TL; Murray EL; Fukuda K; Hall HE; Klimov A; Cox NJ
    MMWR Surveill Summ; 2002 Oct; 51(7):1-10. PubMed ID: 12418623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling control strategies for concurrent epidemics of seasonal and pandemic H1N1 influenza.
    Prosper O; Saucedo O; Thompson D; Torres-Garcia G; Wang X; Castillo-Chavez C
    Math Biosci Eng; 2011 Jan; 8(1):141-70. PubMed ID: 21361405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A case study of the New York City 2012-2013 influenza season with daily geocoded Twitter data from temporal and spatiotemporal perspectives.
    Nagar R; Yuan Q; Freifeld CC; Santillana M; Nojima A; Chunara R; Brownstein JS
    J Med Internet Res; 2014 Oct; 16(10):e236. PubMed ID: 25331122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The reliability of tweets as a supplementary method of seasonal influenza surveillance.
    Aslam AA; Tsou MH; Spitzberg BH; An L; Gawron JM; Gupta DK; Peddecord KM; Nagel AC; Allen C; Yang JA; Lindsay S
    J Med Internet Res; 2014 Nov; 16(11):e250. PubMed ID: 25406040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Mathematical models as tools for studying and developing strategies in the case of a pandemic influenza outbreak].
    Huppert A; Katriel H; Yaari R; Barnea O; Roll U; Stern E; Balicer R; Stone L
    Harefuah; 2010 Jan; 149(1):4-8, 64. PubMed ID: 20422832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of ESSENCE performance for influenza-like illness surveillance after an influenza outbreak--U.S. Air Force Academy, Colorado, 2009.
    Centers for Disease Control and Prevention (CDC)
    MMWR Morb Mortal Wkly Rep; 2011 Apr; 60(13):406-9. PubMed ID: 21471947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applying GIS and Machine Learning Methods to Twitter Data for Multiscale Surveillance of Influenza.
    Allen C; Tsou MH; Aslam A; Nagel A; Gawron JM
    PLoS One; 2016; 11(7):e0157734. PubMed ID: 27455108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pandemic flu knowledge among dormitory housed university students: a need for informal social support and social networking strategies.
    Wilson SL; Huttlinger K
    Rural Remote Health; 2010; 10(4):1526. PubMed ID: 21028934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing three basic models for seasonal influenza.
    Edlund S; Kaufman J; Lessler J; Douglas J; Bromberg M; Kaufman Z; Bassal R; Chodick G; Marom R; Shalev V; Mesika Y; Ram R; Leventhal A
    Epidemics; 2011 Sep; 3(3-4):135-42. PubMed ID: 22094336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of influenza detection and prediction through social networking sites.
    Alessa A; Faezipour M
    Theor Biol Med Model; 2018 Feb; 15(1):2. PubMed ID: 29386017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of flu on hospital admissions during 4 flu seasons in Spain, 2000-2004.
    Lenglet AD; Hernando V; Rodrigo P; Larrauri A; Donado JD; de Mateo S
    BMC Public Health; 2007 Aug; 7():197. PubMed ID: 17686175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Twitter mining for fine-grained syndromic surveillance.
    Velardi P; Stilo G; Tozzi AE; Gesualdo F
    Artif Intell Med; 2014 Jul; 61(3):153-63. PubMed ID: 24613716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpreting Google flu trends data for pandemic H1N1 influenza: the New Zealand experience.
    Wilson N; Mason K; Tobias M; Peacey M; Huang QS; Baker M
    Euro Surveill; 2009 Nov; 14(44):. PubMed ID: 19941777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of Twitter to track levels of disease activity and public concern in the U.S. during the influenza A H1N1 pandemic.
    Signorini A; Segre AM; Polgreen PM
    PLoS One; 2011 May; 6(5):e19467. PubMed ID: 21573238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling seasonal influenza in Israel.
    Barnea O; Yaari R; Katriel G; Stone L
    Math Biosci Eng; 2011 Apr; 8(2):561-73. PubMed ID: 21631146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of the reproductive number for the 2009 pandemic H1N1 influenza in rural and metropolitan New South Wales.
    Buckley D; Bulger D
    Aust J Rural Health; 2011 Apr; 19(2):59-63. PubMed ID: 21438946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Outbreaks of influenza and influenza-like illness in schools in England and Wales, 2005/06.
    Zhao H; Joseph C; Phin N
    Euro Surveill; 2007 May; 12(5):E3-4. PubMed ID: 17991395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing Seasonal Influenza Surveillance: Topic Analysis of Widely Used Medicinal Drugs Using Twitter Data.
    Kagashe I; Yan Z; Suheryani I
    J Med Internet Res; 2017 Sep; 19(9):e315. PubMed ID: 28899847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.