BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 25365604)

  • 1. Modeling the impact of twitter on influenza epidemics.
    Pawelek KA; Oeldorf-Hirsch A; Rong L
    Math Biosci Eng; 2014 Dec; 11(6):1337-56. PubMed ID: 25365604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pandemic influenza: Modelling and public health perspectives.
    Arino J; Bauch C; Brauer F; Driedger SM; Greer AL; Moghadas SM; Pizzi NJ; Sander B; Tuite A; van den Driessche P; Watmough J; Wu J; Yan P
    Math Biosci Eng; 2011 Jan; 8(1):1-20. PubMed ID: 21361397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surveillance for influenza--United States, 1997-98, 1998-99, and 1999-00 seasons.
    Brammer TL; Murray EL; Fukuda K; Hall HE; Klimov A; Cox NJ
    MMWR Surveill Summ; 2002 Oct; 51(7):1-10. PubMed ID: 12418623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling control strategies for concurrent epidemics of seasonal and pandemic H1N1 influenza.
    Prosper O; Saucedo O; Thompson D; Torres-Garcia G; Wang X; Castillo-Chavez C
    Math Biosci Eng; 2011 Jan; 8(1):141-70. PubMed ID: 21361405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A case study of the New York City 2012-2013 influenza season with daily geocoded Twitter data from temporal and spatiotemporal perspectives.
    Nagar R; Yuan Q; Freifeld CC; Santillana M; Nojima A; Chunara R; Brownstein JS
    J Med Internet Res; 2014 Oct; 16(10):e236. PubMed ID: 25331122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The reliability of tweets as a supplementary method of seasonal influenza surveillance.
    Aslam AA; Tsou MH; Spitzberg BH; An L; Gawron JM; Gupta DK; Peddecord KM; Nagel AC; Allen C; Yang JA; Lindsay S
    J Med Internet Res; 2014 Nov; 16(11):e250. PubMed ID: 25406040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Mathematical models as tools for studying and developing strategies in the case of a pandemic influenza outbreak].
    Huppert A; Katriel H; Yaari R; Barnea O; Roll U; Stern E; Balicer R; Stone L
    Harefuah; 2010 Jan; 149(1):4-8, 64. PubMed ID: 20422832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of ESSENCE performance for influenza-like illness surveillance after an influenza outbreak--U.S. Air Force Academy, Colorado, 2009.
    Centers for Disease Control and Prevention (CDC)
    MMWR Morb Mortal Wkly Rep; 2011 Apr; 60(13):406-9. PubMed ID: 21471947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applying GIS and Machine Learning Methods to Twitter Data for Multiscale Surveillance of Influenza.
    Allen C; Tsou MH; Aslam A; Nagel A; Gawron JM
    PLoS One; 2016; 11(7):e0157734. PubMed ID: 27455108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pandemic flu knowledge among dormitory housed university students: a need for informal social support and social networking strategies.
    Wilson SL; Huttlinger K
    Rural Remote Health; 2010; 10(4):1526. PubMed ID: 21028934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing three basic models for seasonal influenza.
    Edlund S; Kaufman J; Lessler J; Douglas J; Bromberg M; Kaufman Z; Bassal R; Chodick G; Marom R; Shalev V; Mesika Y; Ram R; Leventhal A
    Epidemics; 2011 Sep; 3(3-4):135-42. PubMed ID: 22094336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of influenza detection and prediction through social networking sites.
    Alessa A; Faezipour M
    Theor Biol Med Model; 2018 Feb; 15(1):2. PubMed ID: 29386017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of flu on hospital admissions during 4 flu seasons in Spain, 2000-2004.
    Lenglet AD; Hernando V; Rodrigo P; Larrauri A; Donado JD; de Mateo S
    BMC Public Health; 2007 Aug; 7():197. PubMed ID: 17686175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Twitter mining for fine-grained syndromic surveillance.
    Velardi P; Stilo G; Tozzi AE; Gesualdo F
    Artif Intell Med; 2014 Jul; 61(3):153-63. PubMed ID: 24613716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpreting Google flu trends data for pandemic H1N1 influenza: the New Zealand experience.
    Wilson N; Mason K; Tobias M; Peacey M; Huang QS; Baker M
    Euro Surveill; 2009 Nov; 14(44):. PubMed ID: 19941777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of Twitter to track levels of disease activity and public concern in the U.S. during the influenza A H1N1 pandemic.
    Signorini A; Segre AM; Polgreen PM
    PLoS One; 2011 May; 6(5):e19467. PubMed ID: 21573238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling seasonal influenza in Israel.
    Barnea O; Yaari R; Katriel G; Stone L
    Math Biosci Eng; 2011 Apr; 8(2):561-73. PubMed ID: 21631146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of the reproductive number for the 2009 pandemic H1N1 influenza in rural and metropolitan New South Wales.
    Buckley D; Bulger D
    Aust J Rural Health; 2011 Apr; 19(2):59-63. PubMed ID: 21438946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Outbreaks of influenza and influenza-like illness in schools in England and Wales, 2005/06.
    Zhao H; Joseph C; Phin N
    Euro Surveill; 2007 May; 12(5):E3-4. PubMed ID: 17991395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing Seasonal Influenza Surveillance: Topic Analysis of Widely Used Medicinal Drugs Using Twitter Data.
    Kagashe I; Yan Z; Suheryani I
    J Med Internet Res; 2017 Sep; 19(9):e315. PubMed ID: 28899847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.