These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 2536663)

  • 1. Acinetobacter calcoaceticus genes involved in biosynthesis of the coenzyme pyrrolo-quinoline-quinone: nucleotide sequence and expression in Escherichia coli K-12.
    Goosen N; Horsman HP; Huinen RG; van de Putte P
    J Bacteriol; 1989 Jan; 171(1):447-55. PubMed ID: 2536663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genes involved in the biosynthesis of PQQ from Acinetobacter calcoaceticus.
    Goosen N; Horsman HP; Huinen RG; de Groot A; van de Putte P
    Antonie Van Leeuwenhoek; 1989 May; 56(1):85-91. PubMed ID: 2549866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101: nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone.
    Liu ST; Lee LY; Tai CY; Hung CH; Chang YS; Wolfram JH; Rogers R; Goldstein AH
    J Bacteriol; 1992 Sep; 174(18):5814-9. PubMed ID: 1325965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 24-amino-acid polypeptide is essential for the biosynthesis of the coenzyme pyrrolo-quinoline-quinone.
    Goosen N; Huinen RG; van de Putte P
    J Bacteriol; 1992 Feb; 174(4):1426-7. PubMed ID: 1310505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning of the genes involved in synthesis of coenzyme pyrrolo-quinoline-quinone from Acinetobacter calcoaceticus.
    Goosen N; Vermaas DA; van de Putte P
    J Bacteriol; 1987 Jan; 169(1):303-7. PubMed ID: 3539922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence analysis of pqq genes required for biosynthesis of pyrroloquinoline quinone in Methylobacterium extorquens AM1 and the purification of a biosynthetic intermediate.
    Toyama H; Chistoserdova L; Lidstrom ME
    Microbiology (Reading); 1997 Feb; 143 ( Pt 2)():595-602. PubMed ID: 9043136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleotide sequence and structure of the Klebsiella pneumoniae pqq operon.
    Meulenberg JJ; Sellink E; Riegman NH; Postma PW
    Mol Gen Genet; 1992 Mar; 232(2):284-94. PubMed ID: 1313537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation, phenotypic characterization, and complementation analysis of mutants of Methylobacterium extorquens AM1 unable to synthesize pyrroloquinoline quinone and sequences of pqqD, pqqG, and pqqC.
    Morris CJ; Biville F; Turlin E; Lee E; Ellermann K; Fan WH; Ramamoorthi R; Springer AL; Lidstrom ME
    J Bacteriol; 1994 Mar; 176(6):1746-55. PubMed ID: 8132470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy transduction by electron transfer via a pyrrolo-quinoline quinone-dependent glucose dehydrogenase in Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter calcoaceticus (var. lwoffi).
    van Schie BJ; Hellingwerf KJ; van Dijken JP; Elferink MG; van Dijl JM; Kuenen JG; Konings WN
    J Bacteriol; 1985 Aug; 163(2):493-9. PubMed ID: 3926746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidation of the region responsible for EDTA tolerance in PQQ glucose dehydrogenases by constructing Escherichia coli and Acinetobacter calcoaceticus chimeric enzymes.
    Sode K; Yoshida H; Matsumura K; Kikuchi T; Watanabe M; Yasutake N; Ito S; Sano H
    Biochem Biophys Res Commun; 1995 Jun; 211(1):268-73. PubMed ID: 7779095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of pyrroloquinoline quinone in vivo and in vitro and detection of an intermediate in the biosynthetic pathway.
    Velterop JS; Sellink E; Meulenberg JJ; David S; Bulder I; Postma PW
    J Bacteriol; 1995 Sep; 177(17):5088-98. PubMed ID: 7665488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A search for intermediates in the bacterial biosynthesis of PQQ.
    van Kleef MA; Duine JA
    Biofactors; 1988 Dec; 1(4):297-302. PubMed ID: 2855587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of the cofactor pyrroloquinoline quinone.
    van Kleef MA; Dokter P; Mulder AC; Duine JA
    Anal Biochem; 1987 Apr; 162(1):143-9. PubMed ID: 3300411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence and functional analysis of an Escherichia coli DNA fragment able to complement pqqE and pqqF mutants from Methylobacterium organophilum.
    Turlin E; Gasser F; Biville F
    Biochimie; 1996; 78(10):823-31. PubMed ID: 9116051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tn5-directed cloning of pqq genes from Pseudomonas fluorescens CHA0: mutational inactivation of the genes results in overproduction of the antibiotic pyoluteorin.
    Schnider U; Keel C; Voisard C; Défago G; Haas D
    Appl Environ Microbiol; 1995 Nov; 61(11):3856-64. PubMed ID: 8526497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased production of recombinant pyrroloquinoline quinone (PQQ) glucose dehydrogenase by metabolically engineered Escherichia coli strain capable of PQQ biosynthesis.
    Sode K; Ito K; Witarto AB; Watanabe K; Yoshida H; Postma P
    J Biotechnol; 1996 Aug; 49(1-3):239-43. PubMed ID: 8879174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The pyrroloquinoline quinone synthesis genes of Gluconobacter oxydans.
    Felder M; Gupta A; Verma V; Kumar A; Qazi GN; Cullum J
    FEMS Microbiol Lett; 2000 Dec; 193(2):231-6. PubMed ID: 11111029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstitution of membrane-integrated quinoprotein glucose dehydrogenase apoenzyme with PQQ and the holoenzyme's mechanism of action.
    Dewanti AR; Duine JA
    Biochemistry; 1998 May; 37(19):6810-8. PubMed ID: 9578566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lack of PQQ dependent glucose dehydrogenase apoenzyme in some Acinetobacter spp.
    Gerner-Smidt P; Tjernberg I
    Antonie Van Leeuwenhoek; 1990 Aug; 58(2):99-100. PubMed ID: 2176072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Replacement of methoxatin by 4,7-phenanthroline-5,6-dione and the inability of other phenanthroline quinones, as well as 7,9-di-decarboxy methoxatin, to serve as cofactors for the methoxatin-requiring glucose dehydrogenase of Acinetobacter calcoaceticus.
    Conlin M; Forrest HS; Bruice TC
    Biochem Biophys Res Commun; 1985 Sep; 131(2):564-6. PubMed ID: 4052066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.