These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 25366705)

  • 1. The effect of Ce ion substituted OMS-2 nanostructure in catalytic activity for benzene oxidation.
    Hou J; Li Y; Mao M; Zhao X; Yue Y
    Nanoscale; 2014 Dec; 6(24):15048-58. PubMed ID: 25366705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The remarkable effect of alkali earth metal ion on the catalytic activity of OMS-2 for benzene oxidation.
    Ni C; Hou J; Li L; Li Y; Wang M; Yin H; Tan W
    Chemosphere; 2020 Jul; 250():126211. PubMed ID: 32113097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Full solar spectrum light driven thermocatalysis with extremely high efficiency on nanostructured Ce ion substituted OMS-2 catalyst for VOCs purification.
    Hou J; Li Y; Mao M; Yue Y; Greaves GN; Zhao X
    Nanoscale; 2015 Feb; 7(6):2633-40. PubMed ID: 25581777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning the K+ concentration in the tunnel of OMS-2 nanorods leads to a significant enhancement of the catalytic activity for benzene oxidation.
    Hou J; Liu L; Li Y; Mao M; Lv H; Zhao X
    Environ Sci Technol; 2013 Dec; 47(23):13730-6. PubMed ID: 24180247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous introduction of K
    Hou J; Ni C; Ren L; Yin H; Wang M; Tan W
    Environ Res; 2020 Dec; 191():110146. PubMed ID: 32888950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced catalytic activity of OMS-2 for carcinogenic benzene elimination by tuning Sr
    Ni C; Hou J; Wang Z; Li Y; Ren L; Wang M; Yin H; Tan W
    J Hazard Mater; 2020 Nov; 398():122958. PubMed ID: 32485508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tremendous effect of the morphology of birnessite-type manganese oxide nanostructures on catalytic activity.
    Hou J; Li Y; Mao M; Ren L; Zhao X
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):14981-7. PubMed ID: 25140618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noble metal ionic catalysts.
    Hegde MS; Madras G; Patil KC
    Acc Chem Res; 2009 Jun; 42(6):704-12. PubMed ID: 19425544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic Degradation of Benzene over Nanocatalysts containing Cerium and Manganese.
    Wang Z; Deng Y; Shen G; Akram S; Han N; Chen Y; Wang Q
    ChemistryOpen; 2016 Oct; 5(5):495-504. PubMed ID: 27777843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing Oxygen Vacancies by Introducing Na
    Hong W; Zhu T; Sun Y; Wang H; Li X; Shen F
    Environ Sci Technol; 2019 Nov; 53(22):13332-13343. PubMed ID: 31642660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of Oxygen Vacancies of CeO
    Yang M; Shen G; Wang Q; Deng K; Liu M; Chen Y; Gong Y; Wang Z
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the fill percentage in the hydrothermal synthesis process to increase catalyst performance for ozone decomposition.
    Yang L; Ma J; Li X; He G; Zhang C; He H
    J Environ Sci (China); 2020 Jan; 87():60-70. PubMed ID: 31791518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Distortion of Molybdenum-Doped Manganese Oxide Octahedral Molecular Sieves for Enhanced Catalytic Performance.
    Chen CH; Njagi EC; Chen SY; Horvath DT; Xu L; Morey A; Mackin C; Joesten R; Suib SL
    Inorg Chem; 2015 Nov; 54(21):10163-71. PubMed ID: 26451851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Active and Water-Resistant Cu-Doped OMS-2 Catalysts for CO Oxidation: The Importance of the OMS-2 Synthesis Method and Cu Doping.
    Zhang R; Chen Q; Hu YT; Yang L; Chen Z; Wang CW; Qin YH
    ACS Appl Mater Interfaces; 2023 Dec; 15(50):58476-58486. PubMed ID: 38062933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ordered micro/macro porous K-OMS-2/SiO
    Yu X; Zhao Z; Wei Y; Liu J
    Sci Rep; 2017 Apr; 7():43894. PubMed ID: 28443610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The catalytic oxidation performance of toluene over the Ce-Mn-O
    Zhang X; Zhao J; Song Z; Liu W; Zhao H; Zhao M; Xing Y; Ma Z; Du H
    J Colloid Interface Sci; 2020 Mar; 562():170-181. PubMed ID: 31838353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. OMS-2-based catalysts with controllable hierarchical morphologies for highly efficient catalytic oxidation of formaldehyde.
    Su J; Cheng C; Guo Y; Xu H; Ke Q
    J Hazard Mater; 2019 Dec; 380():120890. PubMed ID: 31325698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaction mechanisms for the CO oxidation on Au/CeO(2) catalysts: activity of substitutional Au(3+)/Au(+) cations and deactivation of supported Au(+) adatoms.
    Camellone MF; Fabris S
    J Am Chem Soc; 2009 Aug; 131(30):10473-83. PubMed ID: 19722624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The enhancement of benzene total oxidation over Ru
    Sun X; Yang S; Liu X; Qiao Y; Liu Z; Li X; Pan J; Liu H; Wang L
    Sci Total Environ; 2023 Dec; 902():165574. PubMed ID: 37474046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An investigation on catalytic performance and reaction mechanisms of Fe/OMS-2 for the oxidation of carbon monoxide, ethyl acetate, and toluene.
    Dong N; Chen M; Ye Q; Zhang D; Dai H
    J Environ Sci (China); 2022 Feb; 112():258-268. PubMed ID: 34955210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.