These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 25367102)

  • 1. Biaxial contractile mechanics of common carotid arteries of rabbit.
    Takamizawa K
    J Biomech Eng; 2015 Mar; 137(3):. PubMed ID: 25367102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contractile Smooth Muscle and Active Stress Generation in Porcine Common Carotids.
    Zhou B; Prim DA; Romito EJ; McNamara LP; Spinale FG; Shazly T; Eberth JF
    J Biomech Eng; 2018 Jan; 140(1):0145011-6. PubMed ID: 28975258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-Dimensional Contractile Mechanics of Artery Accounting for Curl of Axial Strip Sectioned from Vessel Wall.
    Takamizawa K
    Cardiovasc Eng Technol; 2019 Dec; 10(4):604-617. PubMed ID: 31625079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential passive and active biaxial mechanical behaviors of muscular and elastic arteries: basilar versus common carotid.
    Wagner HP; Humphrey JD
    J Biomech Eng; 2011 May; 133(5):051009. PubMed ID: 21599100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The biaxial active mechanical properties of the porcine primary renal artery.
    Zhou B; Rachev A; Shazly T
    J Mech Behav Biomed Mater; 2015 Aug; 48():28-37. PubMed ID: 25913605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of carotid artery mechanics in the rat, rabbit, and dog.
    Cox RH
    Am J Physiol; 1978 Mar; 234(3):H280-8. PubMed ID: 629363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biaxial mechanical properties of the human thoracic and abdominal aorta, common carotid, subclavian, renal and common iliac arteries.
    Kamenskiy AV; Dzenis YA; Kazmi SA; Pemberton MA; Pipinos II; Phillips NY; Herber K; Woodford T; Bowen RE; Lomneth CS; MacTaggart JN
    Biomech Model Mechanobiol; 2014 Nov; 13(6):1341-59. PubMed ID: 24710603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of dispersion in myosin filament orientation and anisotropic filament contractions in smooth muscle.
    Kroon M
    J Theor Biol; 2011 Mar; 272(1):72-82. PubMed ID: 21130097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isometric biaxial tension of smooth muscle in isolated cylindrical segments of rabbit arteries.
    Takamizawa K; Hayashi K; Matsuda T
    Am J Physiol; 1992 Jul; 263(1 Pt 2):H30-4. PubMed ID: 1636768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A three-dimensional chemo-mechanical continuum model for smooth muscle contraction.
    Böl M; Schmitz A; Nowak G; Siebert T
    J Mech Behav Biomed Mater; 2012 Sep; 13():215-29. PubMed ID: 22926184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A constitutive model for smooth muscle including active tone and passive viscoelastic behaviour.
    Kroon M
    Math Med Biol; 2010 Jun; 27(2):129-55. PubMed ID: 19592484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biaxial vasoactivity of porcine coronary artery.
    Huo Y; Cheng Y; Zhao X; Lu X; Kassab GS
    Am J Physiol Heart Circ Physiol; 2012 May; 302(10):H2058-63. PubMed ID: 22427520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biaxial biomechanical adaptations of mouse carotid arteries cultured at altered axial extension.
    Gleason RL; Wilson E; Humphrey JD
    J Biomech; 2007; 40(4):766-76. PubMed ID: 16750537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical characterization of murine pulmonary arteries.
    B Ramachandra A; Humphrey JD
    J Biomech; 2019 Feb; 84():18-26. PubMed ID: 30598195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smooth muscle contraction: mechanochemical formulation for homogeneous finite strains.
    Stålhand J; Klarbring A; Holzapfel GA
    Prog Biophys Mol Biol; 2008; 96(1-3):465-81. PubMed ID: 17884150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A continuum model for skeletal muscle contraction at homogeneous finite deformations.
    Sharifimajd B; Stålhand J
    Biomech Model Mechanobiol; 2013 Oct; 12(5):965-73. PubMed ID: 23184063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiaxial mechanical response and constitutive modeling of esophageal tissues: Impact on esophageal tissue engineering.
    Sommer G; Schriefl A; Zeindlinger G; Katzensteiner A; Ainödhofer H; Saxena A; Holzapfel GA
    Acta Biomater; 2013 Dec; 9(12):9379-91. PubMed ID: 23933485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fundamental Roles of Axial Stretch in Isometric and Isobaric Evaluations of Vascular Contractility.
    Caulk AW; Humphrey JD; Murtada SI
    J Biomech Eng; 2019 Mar; 141(3):0310081-03100810. PubMed ID: 30516238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of 3-D mechanical properties of blood vessels using a new in vitro tests system: results on sheep common carotid arteries.
    Blondel WC; Didelon J; Maurice G; Carteaux JP; Wang X; Stoltz JF
    IEEE Trans Biomed Eng; 2001 Apr; 48(4):442-51. PubMed ID: 11322532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternate method for the analysis of residual strain in the arterial wall.
    Li X; Hayashi K
    Biorheology; 1996; 33(6):439-49. PubMed ID: 9093439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.