BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 25367157)

  • 1. Ligand binding to a high-energy partially unfolded protein.
    Kasper JR; Park C
    Protein Sci; 2015 Jan; 24(1):129-37. PubMed ID: 25367157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of circular permutations on transient partial unfolding in proteins.
    Chen C; Yun JH; Kim JH; Park C
    Protein Sci; 2016 Aug; 25(8):1483-91. PubMed ID: 27164316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of a partially unfolded form of Escherichia coli dihydrofolate reductase provides insight into its folding pathway.
    Kasper JR; Liu PF; Park C
    Protein Sci; 2014 Dec; 23(12):1728-37. PubMed ID: 25252157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refolding of [6-19F]tryptophan-labeled Escherichia coli dihydrofolate reductase in the presence of ligand: a stopped-flow NMR spectroscopy study.
    Hoeltzli SD; Frieden C
    Biochemistry; 1998 Jan; 37(1):387-98. PubMed ID: 9425060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Native Escherichia coli and murine dihydrofolate reductases contain late-folding non-native structures.
    Clark AC; Frieden C
    J Mol Biol; 1999 Jan; 285(4):1765-76. PubMed ID: 9917410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dynamic energy landscape of dihydrofolate reductase catalysis.
    Boehr DD; McElheny D; Dyson HJ; Wright PE
    Science; 2006 Sep; 313(5793):1638-42. PubMed ID: 16973882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Characterization of Dihydrofolate Reductase Complexes by Top-Down Ultraviolet Photodissociation Mass Spectrometry.
    Cammarata MB; Thyer R; Rosenberg J; Ellington A; Brodbelt JS
    J Am Chem Soc; 2015 Jul; 137(28):9128-35. PubMed ID: 26125523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclophilin-promoted folding of mouse dihydrofolate reductase does not include the slow conversion of the late-folding intermediate to the active enzyme.
    von Ahsen O; Lim JH; Caspers P; Martin F; Schönfeld HJ; Rassow J; Pfanner N
    J Mol Biol; 2000 Mar; 297(3):809-18. PubMed ID: 10731431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The chaperonin GroEL binds to late-folding non-native conformations present in native Escherichia coli and murine dihydrofolate reductases.
    Clark AC; Frieden C
    J Mol Biol; 1999 Jan; 285(4):1777-88. PubMed ID: 9917411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The coordination of the isomerization of a conserved non-prolyl cis peptide bond with the rate-limiting steps in the folding of dihydrofolate reductase.
    Svensson AK; O'Neill JC; Matthews CR
    J Mol Biol; 2003 Feb; 326(2):569-83. PubMed ID: 12559923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Searching sequence space: two different approaches to dihydrofolate reductase catalysis.
    Howell EE
    Chembiochem; 2005 Apr; 6(4):590-600. PubMed ID: 15812782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Further studies on the role of water in R67 dihydrofolate reductase.
    Timson MJ; Duff MR; Dickey G; Saxton AM; Reyes-De-Corcuera JI; Howell EE
    Biochemistry; 2013 Mar; 52(12):2118-27. PubMed ID: 23458706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multistate equilibrium unfolding of Escherichia coli dihydrofolate reductase: thermodynamic and spectroscopic description of the native, intermediate, and unfolded ensembles.
    Ionescu RM; Smith VF; O'Neill JC; Matthews CR
    Biochemistry; 2000 Aug; 39(31):9540-50. PubMed ID: 10924151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing protein dimerizers: the importance of ligand conformational equilibria.
    Carlson JC; Kanter A; Thuduppathy GR; Cody V; Pineda PE; McIvor RS; Wagner CR
    J Am Chem Soc; 2003 Feb; 125(6):1501-7. PubMed ID: 12568609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for a functional role of the dynamics of glycine-121 of Escherichia coli dihydrofolate reductase obtained from kinetic analysis of a site-directed mutant.
    Cameron CE; Benkovic SJ
    Biochemistry; 1997 Dec; 36(50):15792-800. PubMed ID: 9398309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calorimetric studies of ligand binding in R67 dihydrofolate reductase.
    Jackson M; Chopra S; Smiley RD; Maynord PO; Rosowsky A; London RE; Levy L; Kalman TI; Howell EE
    Biochemistry; 2005 Sep; 44(37):12420-33. PubMed ID: 16156655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GroEL-mediated folding of structurally homologous dihydrofolate reductases.
    Clark AC; Frieden C
    J Mol Biol; 1997 May; 268(2):512-25. PubMed ID: 9159487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR structures of apo L. casei dihydrofolate reductase and its complexes with trimethoprim and NADPH: contributions to positive cooperative binding from ligand-induced refolding, conformational changes, and interligand hydrophobic interactions.
    Feeney J; Birdsall B; Kovalevskaya NV; Smurnyy YD; Navarro Peran EM; Polshakov VI
    Biochemistry; 2011 May; 50(18):3609-20. PubMed ID: 21410224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crowders Steal Dihydrofolate Reductase Ligands through Quinary Interactions.
    Duff MR; Desai N; Craig MA; Agarwal PK; Howell EE
    Biochemistry; 2019 Mar; 58(9):1198-1213. PubMed ID: 30724552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of endogenous ligands bound to bacterially expressed human and E. coli dihydrofolate reductase by 2D NMR.
    Bhabha G; Tuttle L; Martinez-Yamout MA; Wright PE
    FEBS Lett; 2011 Nov; 585(22):3528-32. PubMed ID: 22024482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.