These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
853 related articles for article (PubMed ID: 25367289)
1. Catalyst engineering for lithium ion batteries: the catalytic role of Ge in enhancing the electrochemical performance of SnO2(GeO2)0.13/G anodes. Zhu YG; Wang Y; Han ZJ; Shi Y; Wong JI; Huang ZX; Ostrikov KK; Yang HY Nanoscale; 2014 Dec; 6(24):15020-8. PubMed ID: 25367289 [TBL] [Abstract][Full Text] [Related]
2. Ge/GeO2-Ordered Mesoporous Carbon Nanocomposite for Rechargeable Lithium-Ion Batteries with a Long-Term Cycling Performance. Zeng L; Huang X; Chen X; Zheng C; Qian Q; Chen Q; Wei M ACS Appl Mater Interfaces; 2016 Jan; 8(1):232-9. PubMed ID: 26651359 [TBL] [Abstract][Full Text] [Related]
3. Designed hybrid nanostructure with catalytic effect: beyond the theoretical capacity of SnO2 anode material for lithium ion batteries. Wang Y; Huang ZX; Shi Y; Wong JI; Ding M; Yang HY Sci Rep; 2015 Mar; 5():9164. PubMed ID: 25776280 [TBL] [Abstract][Full Text] [Related]
4. CoMoO4 nanoparticles anchored on reduced graphene oxide nanocomposites as anodes for long-life lithium-ion batteries. Yao J; Gong Y; Yang S; Xiao P; Zhang Y; Keyshar K; Ye G; Ozden S; Vajtai R; Ajayan PM ACS Appl Mater Interfaces; 2014 Nov; 6(22):20414-22. PubMed ID: 25380030 [TBL] [Abstract][Full Text] [Related]
5. Facile synthesis of sandwiched Zn2GeO4-graphene oxide nanocomposite as a stable and high-capacity anode for lithium-ion batteries. Zou F; Hu X; Qie L; Jiang Y; Xiong X; Qiao Y; Huang Y Nanoscale; 2014 Jan; 6(2):924-30. PubMed ID: 24280782 [TBL] [Abstract][Full Text] [Related]
7. Facile Hydrothermal Synthesis of VS2/Graphene Nanocomposites with Superior High-Rate Capability as Lithium-Ion Battery Cathodes. Fang W; Zhao H; Xie Y; Fang J; Xu J; Chen Z ACS Appl Mater Interfaces; 2015 Jun; 7(23):13044-52. PubMed ID: 26016687 [TBL] [Abstract][Full Text] [Related]
8. In Situ Synthesis of MnS Hollow Microspheres on Reduced Graphene Oxide Sheets as High-Capacity and Long-Life Anodes for Li- and Na-Ion Batteries. Xu X; Ji S; Gu M; Liu J ACS Appl Mater Interfaces; 2015 Sep; 7(37):20957-64. PubMed ID: 26336101 [TBL] [Abstract][Full Text] [Related]
9. Hierarchical Graphene-Encapsulated Hollow SnO2@SnS2 Nanostructures with Enhanced Lithium Storage Capability. Xu W; Xie Z; Cui X; Zhao K; Zhang L; Dietrich G; Dooley KM; Wang Y ACS Appl Mater Interfaces; 2015 Oct; 7(40):22533-41. PubMed ID: 26389757 [TBL] [Abstract][Full Text] [Related]
10. One-Pot Decoration of Graphene with SnO₂ Nanocrystals by an Elevated Hydrothermal Process and Their Application as Anode Materials for Lithium Ion Batteries. Kong Z; Liu D; Liu X; Fu A; Wang Y; Guo P; Li H J Nanosci Nanotechnol; 2019 Feb; 19(2):850-858. PubMed ID: 30360162 [TBL] [Abstract][Full Text] [Related]
11. Reduced Graphene Oxide/Tin-Antimony Nanocomposites as Anode Materials for Advanced Sodium-Ion Batteries. Ji L; Zhou W; Chabot V; Yu A; Xiao X ACS Appl Mater Interfaces; 2015 Nov; 7(44):24895-901. PubMed ID: 26496231 [TBL] [Abstract][Full Text] [Related]
12. Pitaya-like Sn@C nanocomposites as high-rate and long-life anode for lithium-ion batteries. Zhang N; Zhao Q; Han X; Yang J; Chen J Nanoscale; 2014 Mar; 6(5):2827-32. PubMed ID: 24468961 [TBL] [Abstract][Full Text] [Related]
13. Partially crystalline Zn₂GeO₄ nanorod/graphene composites as anode materials for high performance lithium ion batteries. Wang R; Wu S; Lv Y; Lin Z Langmuir; 2014 Jul; 30(27):8215-20. PubMed ID: 24937774 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of SnO2 versus Sn crystals within N-doped porous carbon nanofibers via electrospinning towards high-performance lithium ion batteries. Wang H; Lu X; Li L; Li B; Cao D; Wu Q; Li Z; Yang G; Guo B; Niu C Nanoscale; 2016 Apr; 8(14):7595-603. PubMed ID: 26984273 [TBL] [Abstract][Full Text] [Related]
15. Size-controlled SnO₂ hollow spheres via a template free approach as anodes for lithium ion batteries. Bhaskar A; Deepa M; Rao TN Nanoscale; 2014 Sep; 6(18):10762-71. PubMed ID: 25100202 [TBL] [Abstract][Full Text] [Related]
16. Germanium nanoparticles encapsulated in flexible carbon nanofibers as self-supported electrodes for high performance lithium-ion batteries. Li W; Yang Z; Cheng J; Zhong X; Gu L; Yu Y Nanoscale; 2014 May; 6(9):4532-7. PubMed ID: 24663690 [TBL] [Abstract][Full Text] [Related]
17. A facile one-pot reduction method for the preparation of a SnO/SnO2/GNS composite for high performance lithium ion batteries. Chen XT; Wang KX; Zhai YB; Zhang HJ; Wu XY; Wei X; Chen JS Dalton Trans; 2014 Feb; 43(8):3137-43. PubMed ID: 24316886 [TBL] [Abstract][Full Text] [Related]
18. Superior lithium storage in a 3D macroporous graphene framework/SnO₂ nanocomposite. Liu X; Cheng J; Li W; Zhong X; Yang Z; Gu L; Yu Y Nanoscale; 2014 Jul; 6(14):7817-22. PubMed ID: 24910323 [TBL] [Abstract][Full Text] [Related]
19. Bouquet-Like Mn Rehman WU; Xu Y; Sun X; Ullah I; Zhang Y; Li L ACS Appl Mater Interfaces; 2018 May; 10(21):17963-17972. PubMed ID: 29737833 [TBL] [Abstract][Full Text] [Related]
20. Carbon coated SnO2 nanoparticles anchored on CNT as a superior anode material for lithium-ion batteries. Ma C; Zhang W; He YS; Gong Q; Che H; Ma ZF Nanoscale; 2016 Feb; 8(7):4121-6. PubMed ID: 26866581 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]